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FOREWORD 

The theoretical development of the determination of the steady-state 

cable configurations,  the treatment of the vortex shedding loading,  and 

the work presented in Appendix B are due entirely to Dr.  S.   Fersht. 

Programs were developed by both Mr.   H.  L.   Butler and Mrs.  Mariann 

Moore.    The program manager was Dr.   A.   M.  Soldate.    Valuable 

guidance was given to the program by Dr.   C.   Dudley Fitz. 

This program was accomplished under the sponsorship of the Advanced 

Research Projects Agency (ARPA) and was a portion of ARPA's effort 

to investigate several problems related to the design characteristics 

and operational features of a high altitude tethered balloon system. 
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SYNOPSIS 

A computer study has been made of nonsteady aerodynamic loadings on 

a long,   cylindrical cable of the continuous glass fiber-resin type used as 

a tether for a balloon at altitudes of approximately 100,000 feet.    No im- 

portant interactions between torsional, longitudinal, and lateral modes 

were found.    Furthermore,  the effects of lateral loadings from gusts or 
vortex sheddings were found to be unimportant.    Computer programs 

are presented that enable computations to be made of cable motions 

resulting from localized gust loadings and from vortex shedding 

phenomena. 

Certain laboratory and field tests are recommended for further studies 

of the effectiveness of the continuous glass fiber-resin cable as a bal- 

loon tether. 
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1.     INTRODUCTION 

Preliminary system analyses have indicated the technical possibility of 

establishing and maintaining tethered balloon systems at altitudes in 

the order of 100,000 feet.    The practical feasibility of such systems is 

critically dependent, however,  upon the characteristics and properties 

of the tether cable.    Cable width must be kept small to minimize the 

aerodynamic drag.    At the same time, the cable cross section must be 

sufficient to carry the weight of the portion of the cable below or to 

withstand the accumulated drag on the cable above.    A simple calculation 

shows that constant diameter cables constructed of ordinary steel are 

not capable of supporting their own weight over the height of interest. 

Thus,   strength,  weight,  and drag properties are intermeshed,  and 

trade-offs between these properties must be made. 

If cable weight were the only problem,   a possible solution could be 

obtained by tapering or stepping down the cable diameter at lower 

altitudes to decrease the weight to be supported.    Drag force must 

also be considered however,  and these forces can only be balanced by 

a restraining horizontal force at the ground terminal end of the cable. 

Since the drag forces are cumulative (increasing toward the bottom),   a 

tapered cable must increase its diameter at the lower end.    The 

resulting hourglass shape would be correct for only one wind profile. 

The hourglass shape is also difficult and expensive to fabricate and 

to operate. 

Similar results are encountered in attempting to use balloons or kite 

devices at intermediate altitudes to help support the cable weight. 

Although such devices reduce the load requirements on the upper cable, 

the drag forces arc increased considerably,   requiring an increase in 

table size.    Furthermore,  the varying lift provided by aerodynamic 

devices will create rapidly changing geometric conditions,   possible 

instabilities,   and certainly will increase the complexity of the winch- 

c able  subsystem. 
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Another approach for solving the cable problem lies in the improvement 

of the cable materials.    In searching for a suitable material,   a high 

strength/weight characteristic is one of the first properties to consider. 

Fiberglass with a strength to weight ratio many times that of steel is a 

strong candidate for the high altitude balloon cable.    Owens Coming has 

developed a combination of glasses which,  drawn in individual filaments, 

displays a strength in the order of 10    psi.    The Ovens Corning 

scientists have also demonstrated their ability to produce long multi- 

strand fiberglass cables.    Under ARPA/NOTS funding in the fall of 

1964,  Owens Corning drew a cable consisting of 30,000 individual fibres 

with an overall diameter in the order of 0. 1 inch and a total length in 

excess of 80,000 feet.    The group of fibers,   bonded together with epoxy, 

has a strength over the total area including the voids in the order of 

0. 25 x 10    psi.    Strength to weight ratio of this glass cable exceeds that 

of ordinary steel cables by a factor of twenty.    Furthermore,   cost is 

estimated as only 10 cents per foot.    This constant diameter cable 

should easily carry the required weight of the cable at the top end and 

resist the static drag load at the ground terminal point. 

Fiberglass has,   however,   a serious disadvantage in its weakness to 

compressive and shear loadings.    This weakness was clearly demon- 

strated in a test flight accomplished in December 1964.    In this test a 

sudden failure of the cable occurred while the cable was paying out with 

a rapidly rising balloon.    Location and cause of the initial failure were 

not readily apparent.    It was interesting to note,   however,   thai ine 

sudden release of tension apparently allowed a compressive wave to be 

generated which.,   as it propagated along the cable,   caused the cable to 

puff out the individual filaments at many locations.    The cable broke 

into many sections and fell as shards. 

*».. 
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This experience illustrates the basic need for an analysis of the dynamic 

characteristics of the cable and determination of the possible occur- 

rence and magnitude of compressive conditions in a balloon tethering 

cable.    From this analysis,  it will be possible to gain a better under- 

standing of the required cable material properties and dynamic charac- 

teristics. 

A complete analysis of the cable conditions can be accomplished by the 

following steps. 

a) An analysis of cable statics and dynamic characteristics at 

the fully deployed condition (balloon at its float position) 

when the balloon and cable are subjected to an arbitrary 

wind profile. 

b) An analysis of the balloon,   cable,  and cable control during 

launch and ascent for various wind conditions. 

c) An analysis of the cabie and cable control during recovery 

operations. 

The study accomplished under the current program addressed the first 

of these steps. 

As a result of this study,   it was determined that,   at a fully deployed 

state,  the cable can be expected to be comparatively stable and that 

the naturally induced vibrations are not expected to seriously affect a 

cable constructed of fiberglass. 

Field tests also have been suggested which will enable substantiation of 

the conclusions drawn from the theoretical investigations. 
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2.     METHOD OF ATTACK 

The general attack used on the problem of cable dynamics is to consider 

perturbed motions from the equilibrium (steady state) shape of the 

tether cable,  the equilibrium state being determined by the balloon lift, 

balloon drag,  balloon altitude and by the drag along the cable as deter- 

mined by the wind velocity profile. 

The dynamic equations employed are similar to those used bv NESCO 

for an extensive and detailed numerical analysis of the riser and drill 

string system of Project Mohole (Ref.   1).    Accordingly,  NESCO1 s 

previous experience in appropriate numerical analysis techniques is 

directly applicable. 

The determination of the steady state profile will be discussed first. 

W 
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3.     STEADY-STATE CABLE PROFILE 

Practical considerations dictated the treatment of cable dynamics in 

two-dimensional space coordinates rather than development of a three- 

dimensional  steady-state program.    (The treatment of the steady-state 

profile can,  however,  be easily generalized to three dimensions.) 

Geometrical parameters and coordinates are defined by Fig.   1.    It may 

be noted (in this figure) that altitude is taken as the x-coordinate,  and 

the lateral displacement is indicated by the y-coordinate;   ds   represents 

an element of the original length,  and   dS   represents an element of the 

final length of the system such that 

where 

and 

m ds   =   mdS 
o :n 

m is initial mass per unit length (kg/m) 

m 
m o is mass per unit length (in stretched condition) 

with 

C ~ 1 +   =—•      (cable stretch factor) 

T = tension at element 

E - Young's modulus 

A = cross sectional area of cable 

* 
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T(r) 
EA »dr 

P = sin 6   = dx /dS 

Q = cos 9   - dy /d S 

ds ORd 
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Definition of Axes 
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Furthermore,  the angle between the element axis and the vertical is 

designated as    9    where 

P   =   sin9   =   § (2a) 

Q   =   cos9  =  ^ (2b) 

Assuming a horizontal wind in the   (x,   y)-plane,  the wind loading 

normal to the element axis is designated as   p      and 
^ *n 

p     =   p   Q rx n (3a) 

P      =   -p   P ry n (3b) 

The equations of equilibrium are the following. 

dx 
ds P.C (4a) 

ds 
--   Q-C 

dP 
ds 

Q-C 
T 

- 

(PX   +   mg)Q   *   PyP 

dQ 
ds 

P-C 
T p   P    -       p      +    mg     Q y                 x             h 

dT 
ds -   C (Px    +   m§)   P    +    PyQ 

(4b) 

(4c) 

(4d) 

(4e) 

N 
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Assuming a horizontal wind of velocity   v   in the   (x,   y)-plane,    the 

normal wind loading can be expressed as 

•-• 

Pn    =|^CD(R)P2Dv|v| 

where the Reynolds Number for the cable is taken as 

(5) 

R = b2p 
I V 

p    :  pQ x n 

P      =   P   P y n 

(6) 

(7a) 

(7b) 

The following are input parameters: 

D 

EA 

m o 

R 

o 

v 

diameter of cable,  meters 

force,   kgf - kilogram weight 

initial mass/unit length of cable,   kg/m 

acceleration of gravity at sea level,  9.81 m/sec      -   used 

as a conversion factor to express all forces in kgf 

mass density of air    kg/m 

kinematic viscosity of air,   m   /sec 

Boundary conditions are obtained from the following 11 •'■:■• i'ciiions: 

• 

a) For estimation purposes the balloon may to considered art 

a sphere filled withhelium.    Assuming i cual p.'pssuu; 

inside and outside the balloon,   the static I,.';    s 

L   -   ff/6 I).3 p(x   ) ^5/^9 -g   /g 

g      is the value of the gravitational con-ti; 

;«) 
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b) If the dead load,  which includes the balloon's membrane 

and instrumentation,  is W,  the net static lift is 

W (9) 

c) 

where W is an input parameter in Kgf;   D,     is an input 

parameter (diameter of balloon) in meters and   l is the 

initial length of the cable in meters. 

The wind load on the balloon is 

Hi - w/8^TLDbcD<R^v<V |V(V (10) 

in which the Reynolds Number for the balloon is designated 

R 
v(x   ) 
 —   D 
l>(x.)      b 

CO 

d) 

where i/(x) is the kinematic viscosity as a function 

of altitude, 

Boundary conditions are: 

') at s = * '    An initial guess for x and y is made,  then 

I) at s - 0 :    x - 0,   y = Y 

V 
K 

H 

T   "'       I (12) 



The following data are required as input to the main steady-state 

program. 

.- 

a) A table of wind velocity as a function of altitude; the tabu- 

lar velocities being denoted   v(x).    The profile can be of 

arbitrary shape.    The particular profile employed in the 

present study is shown in Fig.  2.    The interpolated values 

of wind velocity are denoted v(x). 

b) Subprograms to compute the quantities p(x)--atmospheric 

density,   l/(x)--kinematic viscosity of atmosphere, 

Cp.(R)--drag coefficient of cable (R is the Reynolds 

number),   Cn(R.)--drag coefficient of balloon.    Atmospheric 

properties are essentially those of the ARDC Standard 

Atmosphere (Ref.   2),  the drag coefficients for a cylinder 

and a sphere are derived from the literature (Ref.   3).    The 

expressions for these quantities used in the subprograms 

are: 
3 

1) Density p(x) in kg/m 

2) 

J) 

P(x) 10 
(1/4) -(x/16000) 

2       -1 Kinematic viscosity J^x) in rn   sec 

v(x) is defined over three ranges of x 

x -' 10000 meters v = 10 

x s 17000 meters v - 10 

x   >    17000 meters        v   -    10 

■4.823 + (x/26800) 

-5.035 t- (x/17100) 

-5.2421 + (x/14250) 

Reynolds Number   R(x)   for the cable 

R(x)       : 
Vo(x)DP(s) 

Vix) 
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Two-dimensional wind profile used for steady-state 

profile determination 
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4) Drag coefficient of cable C.-.(R) 

C_(R) is defined over five ranges of Reynolds 

number R. 

R s 2.Z3 

R * 8.0 

R £ 1000.0 

R * 10000.0 

R > 10000.0 

CD = 10.8 R 

CD = 9. 15 R 

CD   =   4.95 R 

'D 

-.742 

-.526 

■.232 

1.0 

CD   =   1.5 

Figure 3 shows the range of drag coefficients for the 

cable corresponding to the wind profile of Fig.  2. 

For a cable diameter of approximately 0.01 feet,  the 

Reynolds Numbers are below (by two orders of mag- 

natude) those for the transition region   (R <  3 x 10  ). 

On the other hand,  the diameters of balloons are of 

such a magnitude that transition will be encountered 

at certain altitudes.    For a 5-foot diameter sphere, 

the transition region is encountered at about 

50,000 feet. 

5) Drag coefficient of balloon Ci-»(R ) 

Cn(R ) is defined over six ranges of Reynolds 

Number   Rf. 

°Rt* 
1.0 CD 

=   27.4 R 

V 10.0 s =   27.4 R 

Rf* 
100.0 CD 

^    16.0 R 

R,s 1130.0 CD 
=   7.25 R 

R,fi 10000.0 CD 
=   0.4 

Rf > 10000.0 cZ =   0.44 

-.961 

804 

572 

D 

\1 



■ ~*^££*^|1?S§   /Hf? 

10 

!0U 

Q 

10 

10" 

e - 

6 — 

4 - 

001 ft   D CYLINDER 
2 

^                  1(1 D CYLINDER 

6 - 

6 — 
5 ft  D  SPHERE 

2 - 

a - 

6 — 

4 ~ 

2 - - 

20 40 60 80 100 120 

ALTITUDE , I03 ft 

Figure 3 
Drag coefficient as a function of altitude for cylindrical cables 

d small   spheres corresponding tc   the wind profile of Fig.   2 an 

PA-3-10<!32 

■ 

i.*.^iaJiWü*fca.--Wart*te*«^~«K*.jS* jertti&mam'« 

i -J 



The method of solution is based on an iterative procedure employing a 

fourth order Runge-Kutta technique to integrate the system Eqs.   4a 

through 4e along the length of the cable.    Assuming initial values for the 

altitude   x   and the lateral displacement   y   at   s = I,    the tension   T 

and the dependent variables   P and   Q   may be determined,  thereby, 

giving a complete set of initial conditions at the upper end of the cable. 

Values for the altitude at the lower end of cable are obtained for various 

values of   x   at the upper end by the numerical integration scheme.    The 

objective of this procedure is to choose the values   of   x   at the upper 

end in such a manner as to force the sequence of values of   x   at the 

lower end   x      to converge to zero (ground level), 

1 i 
The values   x     and   y*   are input parameters and the result of the first 

integration is    x     (as well as y   ,   T   ,  P   ,   and Q   ).    Succeeding; values o 'o       o       o o' & 

of   x.    are determined by 

i+ 1 
(13) 

for i - 1,   2, 

The iterative procedure is carried out until the condition 

x      +    1 o s   e (14) 

is met,   where eis an input tolerance. 

1 1 



The equations of equilibrium given in the final coordinate 

system are 

d*   -   p 
dS   ~   * (15a) 

dv 
'65 (15b) 

aS = T    [(px 
+ m0Q  '   pyP] 

d§-=   T       [PyP     "      (Px    +    ™g)oJ 

dT 
dS (PX   +   mg)p   +   pyQ 

(15c) 

(15d) 

(15e) 

where m is taken as m    and 
o 

>.- jV^) (16) 

x,   y,   T,   P,   Q at S - S.  are taken from the solution of the above 

iterative procedure. 

With the use of the wind velocity profile shown in Fig.   2,   a determina- 

tion of the steady-state cable profile was made.    The cable properties 

were the following. 

Diameter o. 002^ meters 

EA (Product of Youngs Modulus 

x cross sectional area) 3.451  x 10"* kgl 

IS 



-J 

m 

Unstretched length of cable 

107 psi* 

8.0 x I0"4 Kg/m 

36, 000 meters 

The balloon properties were taken as 

Diameter 40 meters 

Dead load 50Kgf 

(The properties of the balloon are not regarded as essential to the 

problem,   but must be such that the system is stable. ) 

The results of the numerical example are the following:    After five 

iterations the program was terminated giving the results 

s X y T P Q 

m m m kgf 

3.6 x 104 2.75 x 104 2.0 x 104 957. 1 0.973 -0.230 

0.0 13. 5 4. 12 x 104 746.6 0.427 -0.904 

Sf     3. o87 x 10 

The final configuration was then determined and is plotted in Fig.   4. 

Agreement with the boundary conditions for x and y at the ground 

level was within 80 meters. 

A flow chart,   listing and other details of the program,   is given in 

Appendix A.     The output of this program is -used as input to the 

dynamics program. 

'•'Private conv   rsation with Mr.   Sheldon D.   Elliot,   Jr.,   gives a value 

of 7 x 10    psi per E for the glass fiber-resin cable.    (Corresponds to 

a specific gravity of  1.6.) 

16 
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4.      CABLE DYNAMICS 

The primary purpose of the study of cable dynamics is to consider 

possible situations that could lead to the existence of momentary 

stresses far in excess of those produced in the static or steady state 

loading condition.    One possible situation is the presence of clear air 

turbulence in a certain altitude zone.    Another situation is excitation 

by vortex shedding.    A j^neral question concerns possible interactions 

between various modes of cable vibration leading to stress amplifica- 

tions.    The possibility of the existence of important vibrational inter- 

actions will be discussed first. 

,i- 

* 

With the coordinate system of Fig.   1 generalized to three dimensions 

by a   z   coordinate pointing up from the plane of the figure,   and the 

assumption that cable is reasonably vertical,   it can be shown that the 

coupling between torsional and lateral vibration modes is expressed 

by the following equations (Appendix B). 

'  (j   -x  \   ox / dx 3x \   dx dx / ox dx \   dx ox / 

=   J 

+   m 

(17) 

£(»*£) - *("*) - >, 
-A> o  /T dz   oV 
dt \ *t    / 

(18) 

dx 
fast 

(19) 



h*B=«*#f3| 

Where G is the shear modulus; 21 is the polar moment of inertia; J is 

the rotational inertial of the cable;  9 is the angle of twist (torsion); 

m      is a distributed torsional moment per unit length of cable 

(nonexistent in the present problem),   and p    and p    are distributed 

loads in the y and z directions,   respectively,   per unit length.    Lateral 

motions are coupled to torsional motions through terms of the type 

The importance of the coupling can be considered by rewriting the 

-?hs of Eq.   17 as 

2GI 

'hs  Eq.   17. 

+ M 5y a2y , o9 oz o2z 
ox ox ,   2      3x ox ,.   2 

ox ox 
+■ m 

(20) 

2 2        9 2 
The quantities   o y/öx   ,    o"z/ ox1"   are essentially proportional to the 

inverse radii of curvature in the   yx-   and   zx-planes.    From an inspec- 

tion of Fig.   4,  the minimum radius of curvature might be expected to 
4 

be on the order of   1x10     feet.    With the assumption of a maximum 

shearing strength of 200,000 psi.   the maximum value of the quantity 

( ^9/ox)   is given by 

oft 
ox 

max -1 

G 
' 2 

12 ft 

(assuming G.  \ x 10    psi) 

(21) 

1/2 
The torsional wave velocity in the cable is (2G1/J) 

If a purely   sinusoidal torsional wave is considered,   the ratio 

(o9/3x)/(o29/ >x2)  - (X/277),   A bring the wave length. 

lr3f -1 x 10    ft-sec 

I" 



For 

J      » 

~xC x 10-4) 

! 

fo be   m the order of unity,  therefore,  the period of excitation must be 

about  100 seconds.    For such an excitation period,  however;   the situ- 

ation is becoming    essentially that of static loading.    Unless lateral 

excitations can decrease the radius of curvature greatly from 

the static values,   there would seem to be no effect of this type of 

excitation upon torsional vibrations. 

The effect of torsional vibrations on lateral vibrations is consider«? 

by inspection of the magnitude of the term 2GI (^0/^x) which OCCJI' ■ 

in Eqs.   18 and 19.    This term is a torsional reaction moment dS(i,  witn 

the assumed cable properties,  is on the order of 3 foot-pounds at maxi- 

mum shear stre?s.   When the cable loading   N   is considered to be on 

the order of 1000 pounds,   it is intuitively obvious that the torsional 

excitations can have no effect on lateral displacements. 

The discussion given on torsional-lateral dynamic couplings should 

not be interpreted to mean that cable twist is not a possible problem 

caused by rotation of the balloon.    We assume,   however,  that the 

attachment of the balloon to the cable is such that no transmission of 

torque is possible from balloon to cable (or from cable to balloon). 

The analysis of Appendix B (leading to Eq.   B-20) shows,   in addition, 

that out-of-plane,   steady-state cable configurations,    i. e. ,   static 

three-dimensional cable configurations will not contribute to torsion 

if no end torque exists at the point of cable attachment. 

Coupling between lateral and longitudinal vibration modes will be 

considered next      With neglect of torsion,   the coupled dynamic 

.     ! 
'';> ' - I 

Si"', > 
2 0 

1 



where   S = S(t)   is the deformed arc length at time   t .    The deformed 

arc length   S(t)   is related to the arc length   S 

deformed cable by the differential expression 

arc length   S(t)   is related to the arc length   S     of the steady-state 
o 

dS   -   dS    + ~ dS o      oS        c 
o 

(24) 

where   V    is the tangential component of the displacement vector (vector 

representing displacement of a given point of the steady-state shape to 

its new position at time   t   by the influence of the dynamic forces). 

No\ 

ST» 
as 

AT 
(25) 

3 7 
If   AT      2 x 10    lb,   E - .10    i,si,  and cable diameter = 0.01 ft, 

( 67]/ 6S0) = 0. 0 18.    Therefore,   even for a very large increase in cable 

tension,   the approximation   SS ss dS0   is valid. 

equations for two-dimensional cable configurations are (using the 

coordinate system of Fig.   1) 

a2 
o x a /_ dx \ ,    ... a > 

-ssyäs-j + px<i>-ms = m^i 

J5 
as s y asy + P (t) 

y 
m—X- , 

(22) 

(23) 
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The treatment of the dynamic equations,  Eqs.  22 and 23 by the assump- 

tion of small departures from the steady-state configuration proceeds 
as follows. 

Let 

X    =    x     +■ U 
o C 

y = y0 + vd 
(26) 

where   u  ,    v     are the coordinates of the displacement vector fr c        c 
the steady-state configuration in the Cartesian system of Fig.   1 

om 

Also let 

T(t)    =   To + T\t) 

Pj'>    =   P! + Pl(t) 

Py(t)    =   py(t)+p'y(t) 

} (27) 

With the use of the steady-state conditions (which 

to EQS.   4), 

J 

are equivalent 

kk^y<- mg    =   m if* 
*2 (28a) 

i 

i 

4(T°^!)+py0 m- 
bt' 

(28b) 

- ■ 
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and the approximation   öS    äS öS,   Eqs.   2?. and 23 are transformed to 
o 

Tt _o / o \     of    o     T _ö_   / c A     ÖT    c       t 
äs v as /   as  as       as \bs )   öS  öS     

px 
o\    o/ o      o o\   o/ o      o 

»V 
m- 

öt 
(29) 

ÖS  l öS   /      öS    ÖS ÖS    Us    7     öS    ÖS Py 
o o O       O O  x     O' o       o 

m- 

2 
o v 

"ö7 
(30) 

With the assumption that the terms T1 ö/öSQ(öx  /öS  ),   etc.,  are 

negligible with respect to T ö/ öS0     (öu/öS0),   etc.,   Eqs.   29 and 30 

become 

ö2u 

örös-+ös"(Tös-)+px   
= m-r o      o o \       o / öt 

(3D 

ÖS 
Tl 5yo+    ö    /T

ÖVc\+   t 
~ ÖS" + ÖS" (T ÖS" )+ py o      o o  \       o /        ' 

ö2v 
m 

öt 
(32) 

Now,   if the Cartesian components of the displacement vector are 

rotated in such a way that the components are tangential and normal, 

respectively,  to the steady state shape, 

u   =   TJ cos 9 -   § sin 8 

v   =    § cos 6+7? sin 6 
c 

w here 

cos  Ö    =   "Tc—>        si 

cly 
a o 

o 

(33a) 

(33b) 

(33c) 

li 

. -1....      . _   WWrTWYT—"* -■■—*»■ r**-* ■   '■'«■»-v- 
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Therefore, 

*„t 

o o 

(• 
m : c ! ros Ö—j*- -  sin 0—=p I 

3tÄ ?t    / 

o o 

(34a) 

Ir-sine f cos 9^r (T#-)+ sin öäi" (T"l?*)+ P 

cos d—T- + sin Ö—^• 
at. ät^J 

with the assumption that the terms    0/ dS0(dx   /dS  ),   etc.,   are 

negligible. 

Multiplying Eq.   34a by   - sin Ö   and Eq.   34b by   cos B   and adding 

the two equations, 

(34b) 

3   (^  *z  \        t     .     a        t . 0
2£ 

W V~) '  px  sln e+  Py cos 9   =   m~T (35) 

Multiplying Eq.   34a by   cos 9   and Eq.   34b by    sin 8   and adding 

the two equations, 

* 1 t Ä     /     ^TT   \ t t 
— ~   ^T#)-       Pj>sö+    PyS-Ö     = 

O O 

(36) 

Equation  3S is the dynamical equation for lateral vibrations;  Eq.   36 is 

the dynamical  equation for longitudinal vibrations.     Coupling between 

the two equations occurs through terms depending upon   T   . 
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Stresses in the cable arise from the force   T(t).    Accordingly,   con- 

sideration is given to ways in which the dynamic component   T     could 

become appreciable.    An obvious situation exists when the balloon 

itseK undergoes an erratic movement caused by turbulence--such 

moments might result in a dramatic increase in cable tension through a 

longitudinal signal; however,   once the balloon is at altitude in the 

neighborhood of 100,000 feet,   the forces exerted on it should be uniform 

or slowly varying.    A more interesting question is concerned with the 

effect of turbulence on the cable itself.    The incidence of a gust on a 

portion of the cable would   cause   increased drag and a resultant lateral 

deflection.    If the lateral deflection is large enough,  the cable would 

undergo a local stretching which would then be distributed along the 

length of the cable by propagation of longitudinal and lateral modes. 

On the other hand,   small lateral deflections would not result in any 

appreciable increase in cable tension.    (In the same way that the vibra- 

tions of a stretched string do not cause an appreciable increase in 

string tension. ) 

A turbulent gust was modelled in the following way.    The maximum 

amplitude of the gust is taken as  100 ft/sec,   varying sinusoidally in 

time with a period of 3 seconds.    The velocity distribution in space 

is taken as a gaussian exponential form,  the width of which at 10 per- 

cent of the maximum value (at a given time) is 100 feet.    The gust is 

positioned at 15, 500 meters (51, 000 feet). 

The drag force is assumed to be normal to the cable.    Therefore, 

•p    sin 6 

p   cos 8   , 

(36a) 

(36b) 

where   p     is the normally exerted drag force. 

15 
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The drag force is given by the expression 

1    rfx)  „    /ÖXo 'Z •=l-^CD(^)2
D{(V(>tv'.|l)|(,ot^|I)|-voN} 

(37) 

Where   v    = v (x)   is the steady state wind profile;   v   = A sin cot • f(x); 

A - 100 ft/sec, a'  -   2ff/3 ;     p(x)   is the standard atmosphere density; 

C~ is the drag coefficient calculated as a function of altitude and rela- 

tive air velocity,   and D is the diameter. 

The dynamic equation for the lateral deflection of the cable is,  therefore, 

* /T^\       t 52 

(38) 

With the assumption that   T(t) = T   ,  the dynamics program presented 

in Appendix C,   was applied to obtain the lateral deflection    '    as a 

function of time,   starting the application of the gust velocity   A   sinci't 

at time   t = 0.    The deflections at the excitation midpoint (15,000 meiers 

altitude) for approximately 3 cycles are shown in Fig. 5 .    Because the 

dynamics program requires the solution of a matrix with dimensions 

equal to the number of mass points chosen along the length of the cable 

and because the spacing of the mass points was taken as 6 meters in 

order to assure accuracy,   it was found that the computer employed, 

the CDC 3600,   was not large enough to consider the motion of all points 

on the cable.     This difficulty was overcome by the use of the artificial 

end conditions that the lateral deflections from the static configuration 

■ met 
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were exactly zero at distances wall remo'ed from the point of excita- 

tion.    The points of the curve given in Fig.  5 were obtained with two 

sets of end conditions, 

a) at   x   =   15,000  ±   2,500 meters 

r = o 

b) at   x   =   15,000   ±   5,000 meters 

?   -   0 

Both sets of end conditions gave identical results,   indicating that the 

motion caused by a localized gust at 15,000 meters was damped out at 

both sets of end points.      The lateral wave velocity at the 15, 000-meter 

altitude point was approximately 1000 m/sec; with ,.he relationship 

between arc length and altitude given by the static configuration of 

Fig,  4,   it is found that a 9-second interval is sufficient so that reflected 

waves from the end points at  15,000 ±   2,500 meters altitude have 

reached the midpoint. 

In order to demonstrate the results of the dynamics program more 

dramatically,   the form of the lateral wave for various points in time 

is shown in Fig. 6 with *he end conditions     ? = 0   at   x = i 5, 000 

±   2, 500 meters. 

Because gusts are statistical and do not recur with any fixed period, 

the use of the sinusoidal excitation term is somewhat artificial.    The 

dynamics program is,   however,  perfectly adapted to the use of a 

transient excitation.    In the example chosen here the first 3 

seconds or,   indeed,   the fir ;t  1.5 seconds of behavior could be taken 

as  representative of a gust.    It is believed   that the gust amplitude and 

period are conservative. 
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The displacements shown in Fig.   5 are of the order of   1   meter at 
4 

best.    With steady state radii of curvature of the order of    10     meters, 

a    1-meter   displacement will not significantly change the cable tension. 

For example,   assume that the cable length increases by    \(l0    + 1)   - 
4 "\ /   4 - 4 ^\ 10     )/10    - 10     ,    as a fraction of the original (steady state) arc length 

at a point of 1-meter cable displacement. With the cable properties 

employed, the cable tension (load) would increase by 10 x 3.451 x 

10    ^3 Kgf,    whereas the steady-state tension is approximately 800 Kgf. 

it is concluded,  therefore,   that the effects of gust loading on a tether cable 

already heavily loaded does not seriously affect cable tension. 

50 



5.     CABLE LOADING FROM VORTEX SHEDDING 

In the project quarterly report (Ref.  4),  the statement was made that 

vortex shedding loads were not considered to be important.    A further 

analysis of the problem was made and is presented in Appendix D. 

Previous conclusions that vortex shedding loads are not important were 

verified. 

<" 
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6.      CONCLUSIONS CONCERNING POSSIBLE CABLE 

LOADING PROBLEMS 

With the use of a typical,   steady—state wind velocity profile (in two 

dimensions),   it has not been found that interactions between torsional, 

longitudinal and lateral,  vibrations caused by unsteady wind loading 

conditions are important.    Indeed,   unsteady wind conditions along the 

cable have not been found to cause important dynamic loadings by exci- 

tation of any one particular mode,    It would appear that balloon motions 

are much more important than are direct cable loadings in causing 

cable stress changes.    It has been shown that the cable is weak in tor- 

sion,   and certainly no coupling should be allowed to exist between the 

cable and the balloon that would permit a rotating balloon to exert 

torque on the cable. 

It is entirely possible that balloon motions and the weakness of the 

cable material in compression might give rise to destructive effects 

in the longitudinal mode.    This may occur when a downward motion of 

the balloon is suddenly induced during ascent,   when the length of tether 

is short.    The cable,  normally under heavy tension loading,   is momen- 

tarily relieved at its upper end and an unloading (compressive) signal 

is propagated al^ng the cable length.    This compressive signal should 

travel with essentially undiminished amplitude until reflection occurs 

at some point of cable attachment,   e. g. ,  at its mooring point.    Now 

reflection of a compressive stress from a rigid attachment leads to a 

doubling of compressive stress and,  hence,   to the existence of a net 

compressive stress in the cable.    Such a compressive stress (equal in 

magnitude to the original tension stress) might well be very damaging. 

On the other hand,   the effective point of cable attachment may not be 

rigid; for example,   termination at a partially wound drum,  and the 

reflection of the compressive signal might be greatly lessened in 

s e v e r i I v. 
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7.      RECOMMENDED LABORATORY AND FIELD TESTING OF CABLE 

DYNAMIC EFFECTS 

The following tests are recommended. 

a) Laboratory tests on the effects of the sudden reduction of 

tension loading of the glass fiber-resin cable near anchor 

points of differing types.    Anchoring configurations that 

should be studied include 

1) a solid,   vise clamp 

2) a partially wound dram 

3) a mas.? of appreciable inertia solidly clamped to 

the cable between the anchor and the free end 

b) High altitude balloon field tests should be conducted with 

special emphasis on cable motions.    Measurements of 

cable  notions could be made by suitably mounted acceler- 

ometers at intervals along the cable with data telemetered 

by radio transmitters. 

Although the load of the transmitters should be impercep- 

tible on the cable,   this load can be reduced by supporting 

the transmitters on small balloons.    In this case,  drag   . 

from the balloons would also be imposed on the cable. 

The additional balloons would also allow measurements of 

wind speed,  wind direction,   and atmospheric conditions at 

desired intervals.    Thus,  motions of the cable in known 

wind fields could be correlated. 

The overall configuration of the cable could be made visi- 

ble by attaching markers  such as  flags at regular intervals 

53 
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along the cable as it is paved out during ascension.    The 

string could be photographed from a distance or visual 

observations could be made by telescopes mounted for 

triangulation. 

Cable tension at the balloon and at the ground as well as the 

cable angle at these two positions would,   of course,  be 

important 

.   < 
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SUMMARY AND CONCLUSIONS 

■ 

A computer study has been made of nonsteady aerodynamic loadings on 

a long cable of the continuous glass fiber-resin type used as a tether for 

a balloon at altitudes of approximately 100,000 feet.    No important 

interactions between torsional,  longitudinal,   and lateral modes were 

found.    Furthermore,  the effects of lateral loadings from gusts or 

vortex sheddings were found to be  unimportant.    Computer programs 

are presented that enable computations to be made of cable motions 

resulting from localized gust loadings and from vortex shedding 

phenomena.    Theoretical results obtained to date indicate that the high 

strength-to-weight ratios obtainable with the continuous glass fiber- 

resin cables will lead to an effective tether for high altitude balloons. 

The present dynamic study has been concerned with cable behavior in 

the fully extended configuration.    It is believed that benefits can be 

obtained by extending the study of system dynamics to include the motion 

of the balloon and cable during launch,  the period in which the balloon 

rises to its maximum altitude,  and recovery operations.    Such a study 

should also delineate the effects of a streamlined cross sectional cable 

shape and other techniques for reducing aerodynamic drag.    Such a 

reduction in drag might have an effect on steady-state configurations 

and balloon behavior during the rise period.    A studv of this type might 

also better define the way in which the cable should be payed out during 

the rise period (for a given wind profile) and would thus enable wind 

performance to be specified more effectively. 

Certain laboratory and field tests are recommended for further studies 

of the effectiveness of the continuous glass fiber-resin cable as a 

balloon tether. 

J5 
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APPENDIX A 

STEADY-STATE CABLE PROFILE PROGRAM 
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Notation 

J      * 

D 

EA 

AMO 

W 

G 

DIST 

XL 

YL 

EP 

DSI 

PN 

PNP 

DSB 

PITER 

OPTION 

TAP 

diameter of cable (meters) 

force (Kgf ) 

m0 - initial mass/unit length (Kg/m) 

weight of balloon (Kgf) 

gravity at sea level (m/sec   ) 

I  - length of cable (meters) 

x.f   = initial altitude (meters) 

y *   = initial displacement (meters) 

e - tolerance defining the coi vergence of the 

sequence of altitudes computed at the lower end of 

the cable (meters) 

£.S - arc length step size (meters) 

number of intervals desired in final integration 

printing interval (i.e.,   print every PNP step) 

diameter of balloon (meters) 

maximum number of iterations performed to 

obtain convergence 

a flay such that: 

1   - spacial history of cable is printed after 

each iteration 

0 - omits this printout 

a flag such that: 

i   ~ cable information is written on tape for use 

in dynamics program 

Ü - omits \\ riting information on tape 

■IK 
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Required Subroutines 

RUNGS      4th order R-K integration routine for 1st 

order system 

DERIVE       evaluates 1st derivatives 

EROR       gives error code and aborts program 

RHOX      computes mass density versus altitude 

NU      computes kinematic viscosity versus altitude 

CDR       computes drag coefficient versus Reynolds number 

for cable 

CDBAR       computes drag coefficient versus Reynolds number 

for balloon 

INTER       uses linear interpolation to obtain wind velocity 

versus altitude from a given table 

Required Data 

FORTRAN Math 
Quantity Symbol Units Test Case 

D D m 0.0025 

EA EA Kgf 3.451 x 10 

AMO m o Kg/m 8.0 x 10"4 

W W Kgf 50.0 

G 8 /        2 
m/ sec 9.8" 

DIST I m 36000.0 

XL 1 
ill 28000.0 

YL Vl m 20000.0 

(BiO|»lto«»IM'»e,-v/ 



Required Data (continued) 

FORTRAN Math 
Quantity Symbol Units T_»st Case 

DL Not used-leave 
field blank 

EF c m 10.0 

DSI AS m 6.0 

PN PN 6000.0 

PNP 
10.0 

FSB 
Db rr. 40.0 

PITER 
6.0 

OPTION 
1.0 

TAP 
1.0 

Table of   x    vs.     v (x) 

Wt-i 10 



Flow Chart lor tht- Numerical Algorithm 
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PKu&KAM   BALLOON 
,w;/PUTtS   STATIC   DLfLtCTlON   -   UNITS   IN   M-KG-StC 
DIMENSION   5S(10UC).xS(lo00),YSli00o)tPS(lCC0l.'-i<lC00)tYl3).YPli)t 

,nc*Ul9; .VllOOl »XV lvü)»Ti>S(iCJOto) . lSdoüül.XSSi iC0u3)»PSi( 10005 1 
LJ-'KÜN   Nf.NSit.Nf ,v«XV»D»AMO,c.A»G»DSb 
COMMON /i/ XSi-.SStXS.YS 

;w KcAO IbOtj) (ht«D<1'»1 = i » 9) 
j FORMAT CyA8) 

IF (MEAD(1)| <,.5.-<» 
5 CALL EXIT 
<*   READ (60tl) OtEAtAKOi'A'.OiDlcT.XL.YLtDLitPtOSI tP'v.PNP»DSotPiTER 
1.OPTION,TAP 

1 FORMAT (5EH..6) 
?«NP = PNP 
REAL (60,2) N,(XV(1),V(I)tI=l»N) 

2 FORMAT (1I3/I6E12.b) ) 
(ritAQI 1 ) ,1-1,9) 
D»HA*AM0th'»6tDlST,XLiYLtDL,     tP.DSl ,PN,OSB 
=   ,1E15.5»7H     EA   =   ,1E15.&»7H     MO   =   ,1E15.5.6H     W   =   , 
=   .U1S.5//8H  DIST   ~   .1E15.5.7M     XL   =   .1E15.&.7H     YL 

DL   =   .1E1&.5 //6H   EP   =   .i£1^.5,6H     OS 
vi\   =   ,1L15.5»öH     DSö   =   ,ltl5.S>) 

WRITE   (6   ,3) 
WRITE   (6   ,9) 

9   FORMAT./5H   0 
1 It 15 .5 , 6h     G 
2=   »lEit>.&.7H 
i I   =   » 1113 • a t 7 ri 

LOGIC^    1 
OPk=DIST/100. 

<L = 0 
I r t. R A T = 1 
JT^PITER 
N.NNP-NNP 

5g GO TO 1 11» lit 14 1 »LOGIC 
11 LOGIC-LoGlC+1 
5 CALL R-1-/X (XL.RHO) 

CALL Nu (XL,GNU) 
NS=1 
CALL INTER (XL.V.XV.SVL) 
KL-.'.Ü5i;vL»DS.3/GNU) 
( •; i C Jo.«R 131. »CDo) 

i. .•••» I 576 2 = 4*,<M0*D&O**3-W 

ii ■ . j , ;ov9Cal*'-HG*COo*ü$o**2*SVL*AoS(SVL)/G 
r -'.•■.>vT('iL«*2 + CVI.»»2) 

■ . - ..,/fL 

..L^lL/TL 
Y I 1 ) = X L 
> I 2 ) - Y L 
iI 3 ! =TL 
1 l't I "PL 
•' I ^ ) ~CL 

i   1 
S 0 

'io= 

1ST 
-:>S( 

. .i.VGS (.' 
I-Y13) 
,PR 

,ÜS,1),Y,YP»ID) 

J-l 
' ,.. I 
>: . I 
i j( 

r .i 
p->i 

J ) - 3 
J) - Y( 1 ) 
J I = Y ( 2 ) 
J)= Y(3) 
J ) - Y 1 ■'. I 
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J     * 

13 

Sfe 

1«. 
15 

lo 

a / 

(3S(11 >,XMI1 l.rsiil I.TSII1 I.PSIlI) tuS( II )f 1I = 1»JJ) 

20.20.86 
,d7,87 

I     ; 

I I 

uS1J)=   Y(5j 
0 (-ALL   Ruf«GS   (S.DS.3.Y.YP.IDI 

i = .*l 
rssiii.Yisi 
iF   IÖPT10M   91.92.91 

91 IF   (DIST-S-iPRS)     92.95.95 
95   OP?!S = DP«S'»ÜPa 

J = J+1 
SSU)=S 
xiUM  rill 
YS(J).    Y(2> 
TSlJ|i   Y(3) 
PS(J)=   YCI 
OSU);   Y|5) 

92 IF   (S-.CCC1I      7.7.6 
1 If   (uPTlCM   9*, »50.9* 

9<t   JJ*J*1 
SSIJJ)   =   S 
XSIJJI  - veil 
YSIJJ) = Y(2) 
rS(JJ) = Y(3) 
PS(JJ) = YUJ 
SS(   '. ) - YI5> 
k.*ir> (6 tit)) 
uo re; so 
LCwiC-L'J&IC + l 
Yl=Au3(Ylll) 
lTt.=UT-JTt.RAT>l 
IF    ! ••;■' IYUI )-£P) 
IF    ( I 7E.-iAT-JT)    26i 
XL=XL-Y(l)/2. 
oJ   TO   S 
IF   I A.;S( Y( 1) 1-Y1)    15,16.16 
Y1 - A f S ( Y ( 1 I I 
CO   TO   l<* 

*L=XL*Yl/6» 
M. - < L + 1 
..J   TU   (8,5 A), KL 
-•'■! L   L^URI1) 
.•.< 1 TL    i 6    ,oo ) 
' -■< '-'T    I 1 Irrli;! vtRljLHCE) 
.»vlft    (6    ,lo)    OIbT,XL,YL,TL,PL,uL,Sr(Y(J)»J=l,5) 
KvH.'-'AT    I///9X,1HS,1SX,1HX,18X,1HY,18X,1HT,18X,1HP,18X,1H0// 

1 («j E 1 9 . 7 I ) 

:UM = 1.*ITSSI 1) + TSS(I) )/(2.*EA) 
11=1-1 
i)0   <.*   J = 2.1 I 
-f>0 v.-'. ;.vlf ( 1.+TSSIJ1/EA) 
c ,v = SUM * OS I 
*^ITc. (6 ,65) SUM 
<v.,»VAT (/// 16H TOTAL LENGTH = ,1E18.6) 
^- * YL -Y(2) 
S = SUM 
:)5 = -SUM/PN 
NS = 1 
! =1 
J =i 
Y(1)=XL 
Y I 2 ) = Y L 
Y(3 ) = TL 
»I4I=PL 

■. : 
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62 

Y131--0L 
SSdl = S 
XSlll = XL 
YStl) = Yl 
fS(l) =TL 
PS(1) =PL 
QS(l) =GL 
ENT=1. 

xssm*mi 
TSi.1 ] )=Y(3) 
PSS( I )=Y«<») 
CALL RUNGS 
CALL RUNGS 
UI + 1 
XSSC)=Y(1) 
TSS(1)=Y(3) 
PSSI I MY(4) 
If    (1   -NNNP)   61.62.62 
NN,\P-NNNP + NNP 
J = J + 1 
SSUI-S 
XS<J)=   Ytll 

61 
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(S.Db.S.Y.YP.ID) 
(S.DS.5.Y.YP.ID) 

YS(J)= 
TS(J > = 
PS(J)= 
*S(J)= 
IF   (S-. 

Y(2) 
Y(3) 
Y(4) 
YI5) 
0001) 64,64160 

JJ = J + l 
SS(JJ) = 
XS(JJ) = 
YS(JJ) = 
TS(JJ) = 
PS(JJ) = 
QS(JJ) - 
ivRITE (6 
IF   (TAP) 

S 
Y(l) 
YI2) 
Y(3) 
Y(4) 
Y(5) 
,16)      (GS(L).XS 
\63«1000tl63 

WRI IE   (6»8000) i-DSI»UIST 
FOSMAniHl.I9»25H POINTS 
1E15.B) . 
.•.KITE !2) (XSSIL) »L = 1 .1 1 

(2) (TSS(L) .L=1,I ) 
(2) (PSSIL)iL=lfIJ 
1000 

(L)»YSILIiTS(LI.PStL)»uS(L)»L=1»JJ| 

AT A INCREMENT OF.E15.8.12H STARTING AT( 

ARITE 

«Hilt 
GO TO 
tND 
iUoRCUTlNE RhOX(X.RHQ) 
MASS DENSITY VS ALTITUDE 
KH0=.25-X/16000. 
SHO=10.«*RHO 

RETURN 
END 
JÜöROUTlNt   NU    IX.GNU) 
CINEMATIC   VISCOSITY   VS   ALTITUDE 
IF    (X-lOOOCi)    1.1.2 
GNU*-'"&2J'-X/26ö00. 

GO   TO   3 
iF    (X-17700.)    3.3.H 
uNU = X/ 17100. -b.035 
UO   TO   6 
bfiU-X/ !'<2i0.-b.2'421 

GNU* 10.«»GNU 
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LINEARLY   TO 

RETURN 
END 
SUBROUTINE INTER IXL.V.XV.SVL» 
GIVEN Tr:£ ALTITUDE, ThlS ROuTINt INTERPOLATES 
uoTAJN Tut «INU VcLUCITY FROM INPUT TAoLE 
DIMENSION  VllOOItXVClOUl 
CO".MGN N«NS 
WJ-N-NS+1 
IF IXL-XVINNII 5,5,6 

6 fiS = l 
5 DO 1 I^NS.N 
J=N-I+1 
IF (XL-XVUI) 1.3,4 

i   SVL=V1J) 
GO TO 2 

4 SVL=(V(J+l)-V(J))*(XL-XV(J+l))/(XV(J+li-XV(J)|+V(J+ll 
GO TO 2 

1 CONTINUE 
2 Ni:J«-l 
KtTuRN 
END 
SUsROUTlNE COBAR (RL.CDdl 
DRAG COEFFICIENT VS REYNOLDS NUMBER FOR BALLOON 
IF (RL-1.01 1.1.2 
C^J=27.4*RL«*(.961 ) 
GO TO 10 
IF (RL-10.J 3.3,4 
CJO=27.4*RL**(-.604) 
oO TO 10 
IF (RL-100.) 5.5.6 
CDb=16.0«RL**(-.572) 
GO TO 10 
IF (RL-1130.) 7.7,8 
CD3-7.25«RL**(-.4) 
GO TO 10 

8 IF (RL-.'OOOO.) 9,9.11 
9 CD6=.4 

GO TO 10 
11 CDIM.44 
10 RLTURN 

END 
SUBROUTINE  RUNGS ( X ,H.N , Y , YPRI ME , INDEX ) 
X   INDEPENDENT VARIABLE 
H   INCREMENT DELTA X, MAY BE ChMNGED IN VALUE 
N   NUMBER OF tOUATIONS 

yPR,MFEPeoFDR^ ^RIA°'- bL°"     °NE »'^NSIUNAL ARRAY YPRIME  DERIV«TIVt oLOCK  UNE DIMENSIONAL ARRAY 
THE PROGRAMMER MUST SUPPLY INITIAL VALUES OF  Yd) TO Y<Ni 
INDEX  IS A VARIABLE WHICH SHOULD BE SET TO ZERO BEFORE EACH 
INITIAL ENTRY TO THE SUBROUTINE. I.E., TO SOLVE A DI^EREIT 
btT OF EQUATIONS OR TO START WITH NEW INITIAL CONDITIONS 
Hu PROWAMKtK MUST WRITE A SUBROUTINE CAL JD OcRlyl   WH.CH COM 

PUTtb Tht UtRIVHTlVtS AND STORES THEM 
TMt ARGUMENT LiiT IS   SUBROUTINt DER IVE<X,N,Y,YPRIME) 

?{Ävä!J;rsrMU5"^(5»^'5..wl(5,,W2(5,,rt3i5?' 
1 DO 2 1 = 1,N 

i,l I I )=H«YPRIME( I ) 
I  ^l)=Y(I) + (wi(I)».5) 

A=X*rt/2. 
CALL DERIVE!A,N,Z.YPRIME) 
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Du 3 1=1.N 
*7II)=H«YPRIME11) 
ZI i ) = r(M + '5»w2(li 

A=X*H/2« 
LALL DERIVEIA.N.Z.YPRSME) 

DC * l«l»N 
,31i)=H»YPRIME«1» 
/(1)=Y«I)+W3( I ) 
A = X+H 
CALL DERIVE (A.N.Z.YPRIME! 

DO 7 1=1.N 
A'U I )=H»YPRJME«i » 
YJl)»Y(l)»((«2»*(W2(I1+W3(II)I+WltIJ«M4(ll1/6.) 

CALL DERIVE (X.N.Y.YPRIME) 
GO TO 6 
CALL DERIVE (X.N.Y»YPRIME) 
INDEX=1 
RETURN 
END 
SUBROUTINE DERIVE (X.NN.Y.YP) 
DIMENSION VllOO).XV(iOO).Y(5).YP(5j 
COMMON N.NS.ENT.V.XV.D.AMO.EA.G.DSB 
Z = Y(1) 
CALL RHOX (Z.RHO) 
CALL NU (ZiGNU) 
CALL INTER (Z.V.XV.SVL) 
R = ABS<SVL*0»YU)/GNU) 
CALL CDR (Fi.CD) 
PN = .5*RHO*CD*YK)*»2»D*SVL»AeSiSVL)/G 
PX = PN»Y(5I 
PY = -PN»Yl<») 
IF (ENT) i.?.l 
DEM = 1.+ Y(3)/EA 
AM=AM0/DEM 
PGV. = PX + AM«G 
YP! 1 )=YU)*DEM 
YP(2)= Y(5)»DEM 
Yr>(.})= (Puy,»YU)+PY*Y(!>) )*ÜEM 
YPU) = YP(-2IMPGM*Yt5) -PY* YU))/Y(3) 
YPI b)-   YP( 1 )»(PY»Y(4)-PÖM»Y(5) )/Y(3) 
RETURN 

+AM0«G 
= VC) 
Y(5) 
PGM»Y(<t)+PY*Y(5) 
(PGK«YI5)-PY«YU))*Y(5)/ Y(3) 
(PY«Y(4I-PGM«'Y(S) >*Y(M/Y<3) 

PGM = PX 
VP  (1)  : 
YP(2) 
YP13) = 
YPU) = 
YPtä) = 
KL TURN 
END 
SUBROUTINE CDR(R.CD) 
DRAG COEFFICIENT VS REYNOLDS 
IF (R-2.23) 1.1.. 
CD=10.6»R**(-.742) 
uO TO 10 
IF (R-8.0) 3.3.4 
CD=9,15#R»*(-,526» 
GO TO 10 
IE (R-1CCO.0) 5.5.6 
CD-4.95«R#«(-.232) 
GO TO 10 

NUMBER FOR CABLE 
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Ö I? (3-10000. 1 7 7 
7 COU.O 
00 10 10 

b CD=1.15 
)o RETURN 

END 
SJ3ROUT1N6 EROR 1 
1*1 
«RITE 161.11 1 

i FORMAT 113H ERROR 
CALL EXIT 
RETURN 
END 

COOt   ».115» 

I 
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APPENDIX   B 

SIGNIFICANCE OF TORSION 

by D r.   S.   Fershl 
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Consider a three-dimensional right handed Cartesian system of co- 

ordinates (x. y, z),   fixed at the top of the riser with x (vertical) directed 

downwards.    In each horizontal section of the riser we have three forces 

and three moments in the direction of the axis (Fig.   B-l). 

Considering an element of the riser there are,   in addition to the internal 

forces and moments,   external loads and inertia forces in the y,   ?. 

directions.    Finally,   a distributed external moment m    will be consid- ' x 
ered. Coupling of motion in the "x" direction with "y", "z" motion is a 

separate problem which is not considered here, so there is no equation 

tor "x" motion. 

Deflections due to shear,   and rotational inertia about axes normal to 

the deflected shape of the riser,   are factors which need be considered 

only when there is reason to expect deformations in modes whose wave 

lengths are in the neighborhood of the diameter of the riser.    For the 

riser,    major   exciting   forces   with  periods  lower  than  0.003 

seconds would be required before the inclusion of the shear and rotary 

inertia would be warranted,   and those complicating factors are therefore 

neglected. 

The  remaining equations of motion for the elemental Fig.    B-l  are 

•S. 

"*X 
p      ■- m 

v 

=S 
js + p 

X z mi4        (B- 

■M 

 <  S      —>-   -  b     tr~    *   m 
\ Z       N V      ÄX X 

-^, 

*f 
(B-2) 

M 

\ 'X z 
- t 

'1 21 (P-3) 

_^_   .  x ._!    .  s 
■ \ x v 

- t 
B-4! 

TO 



S. + - T-^dx 
a * 

i y • i r t-    1 i • 
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Eliminating S    and S    from Eqs.   B-2,   B-3,   and B-4, 
Y z 

 x_   ( ^y y       ~z z 
■"X       - x \AX/ \"X/ 

>2e 
"t 

Since    l-^;/    v<   1    ( r^—;    « 1,   the last equation can be written 

(B-5) 

X ~y 
-x 

y 
X ^x 

z 
~x *x 

=  J (B-5') 

We now  find the stress strain relations for the beam.    In order to 

understand the geometry of deformation of such a beam,   and derive 

the stress strain relations,  we have to use some of the concepts of a 

space curve.    In our case the problem is m icn simplified by the fact 

that the cross section of the riser has circular symmetry.    This 

permits each point along the axis of the riser in the deformed shape to 

be described by a  radius vecto*- 

x 1 y j + z k (B-6) 

where  i.   j and k,   arc unit vectors along the axes of the coordinate system. 

Assuming that 

fir =   as   ^ dx 

the unit  vector tangent to the deformed riser is 

d_r 
ds x 

(B-7) 
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Hie plain« in which the riser lies at each point is the osculating plant. 

This plane is determined by two vectors; the vector t   and,   a unit vector 

n which is normal to the riser.    It is known from differential geometry 

that 

f 

_t 
S "X p   " 

*2 
0   V   -T   , 
—V J + 

.2 
z k (B-8) 

-x 

where   f>   is the curvature of the deformed riser,   measured in the 

oscillating plane.    The unit vector normal to t  and n,   i.e. ,   the unit 

vector normal to the osculating plane is, 

b   =    t  x n   =   p >2z "z 
~x i)1 

-$* 
(B-9) 

Elastic relationships for bending and torsion are 

M _b 
El *x 2GI 

(B-101 

By ordinary sign con-        ions,   the bending moment vector for a cross 

section with an outer normal t ,   is in the direction of b,   while the 

torsion moment vector is in the direction of t.     Using Eqs.   B-7,   B-8, 
B-9 and B-10,   one can write 

M,   b 
b 

HE 
0 

El   Iri    — ih 
\*x 

Lji   .  El—^7 + El—J  k    (B-l >) 

T t   -    2 Cl -^   t   =    T i   +    T —   i    +    T 3   V 
X "X    " ?x 

B- 12) 

The sum of the components of these two vectors along the axes are, 

f>v    v - 2 
M      -    T + El hji   -4   -   —   —\  ) 

x \r>x   ,,   2 -x    -   2 / 

S3 



J { 

M 'S* *x 
El 

ftx 

v2 
M     =    T EI7i ^x 

(B-13) 

Using Eqs.  B-l,   B-3,   B-4,  B-5,   B-1Ü and B-13,   one obtains 

2G L (I 1£) + ^1 i_ fi M ix) + ^£ JL fa &_ oz) 
x V    ftx/      ftx ftx  V   ftx  ^x/      ftx  ftx V   ftx  ax/ + m    =   J 5 

>t 
(B-14) 

ox 

.2 

ftx ftx 7 
m —^ + ^x \ *x nä/ 

'x?t2' 

-     /      *   z\ ft      /UT ftQ ftvv,       ft   /     ftz^ 
m 

>2 
o   z 4(J^ 

(B-15) 

ftt2 

(B-16) 

The last term on the right side of Eqs.   B-15 and B-16 is small compared 

to the other terms,  and may be neglected. 

We now have differential equations for the three unknow:   functions, 

y(x,t),   z(x, t) and 0(x, t).    For the static case this system of equations 

can be reduced to the form 

dl  ,   dy   d   /,.- dy\       dz   d   /_ dz\ _ 
dx       dx dx   \     dx/        dx  dx \     dx/ x (B-17) 

~   P.- 

<\"    /_. d   yN 

dx dx dx 
2 \     dx-        dx \     dx/ 

dx dx dx 

•r^) - iL fNdz 
2  V     dx/       dx  V   dx 

54 

(B-18) 

(B-19) 

«•» 

■ 

————-.-7.. .,.:^ - 



These equations of stati-S may be used to gain quantitative knowledge 

about coupling between bending and torsion.    Let us begin with the 

effect of out of plane bending on torsion.    Assuming that   m    =0,    one 

can see that the last two terms in Eq. B-17 represents the bending effect 

on the torsion.    Equation B-17 can be readily transformed into the form, 

a [■*© * @ D2K &D ♦ ®2 ♦ (£)2] - • 
Dividing Eq. B-17a by T j 1 + [^-j    + i^pi      ,    one obtains 

T 
dT     1 
dx      2 

1 + Vdx/ 
'dz\ 

x/ 

& D+ (S)2 + (H)2J ■ °    (B-17b) 

Integrating this equation    gives 

*-*.H^*(3£)2J 
1/2 

(B-20) 

Thus,   for the small angle theory assumed throughout and verified by 

calculations,   the torsion in the beam does not vary with "x" unless 

there are external moments,   m   ,   applied continuously or discretely 

along the length of the riser.    Out of plane bending does not create 

torsion loads or stresses. 
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APPENDIX C 

CABLE DYNAMIC PROGRAM--EFFECTS OF LATERAL GUST LOADING 
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Equation of Motion 

as (T    b")    -   m t. \   m"5s/ o3t 

a2g      p(x    ) d  5   .        rn (R    )p2 
2g D'   m     m 

(vo  +vt- w\ k  +vt-|f -vo   vo I 
where 

.  2.3fx     - x    ./\2> 

t         /.           \             )         v m       mid/ v     =   i^A s in ojti    exp ( -    • •   y 

,1/4(XA1-XA2V 

x        and   x        bound the forcing function   v ,    otherwise   v   = 0,    and 

x    .,   is the cable segment midpoint, mid " c 

Difference Analogue 

j        IT     (* + 2s +£! -5 - ? t 
4^0^    L   m\"m+l,n+l ^m+l,n        m+l,n-l "   *m,n+l "       m, n 

- ?      \-T    r?       +25    +5       -p 

"m.n-lj m-1 \  m,n+l m, n        m,n-l      ^m-l.n+l 

- 2 = 

m 

m-l,n      ^m-1 -l)] 

^T  (wi " 2?m,n + ?m.n-l) " ^XJ DCD<Rm)P: 

t     /?m  n "   §m   n   l\ t     I     m, n        m, n-1   \ 

A     m ) 

v        + v o 
m 

"m,n+l        m, n-1 
——ISt  v        + v o 

m 

v        v      ! 
o o 

m       ml 

Boundary Conditions 

l, n+1 

"M -n+1 
0 , where   m = 1,   2,   ....  M 
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j 
■ : 

Initial Conditions 

§m.O   =   ° 

where   m =  1,2,. .. , M 

Method of Solution 

11   Am-lSm-l,n+l+ Bm-l?m,n+l + Cm-l,n+l-m+l,n+l " Dm-1   f°r 

m = 2,. . . , M- 1,  then 

m'1 4ASZmo    m"1 

B       .    =    1+ £i (T     +T       ,)+ S D    m    m 

m-1 ^A«2 m m-1 4gm 4AS   m 

v        + v 
o 

m 

t    /  ^m, n      ^rn, n- 1 \ 

A     K ~) 

■ 

At' 
m-1 4ASZm        m 

D       .    =   2? -  ? 
m-1 m, n        m „   i ~ ^       i f 2 §     . ,       +?,.        ,   - 2 ^ -  ?m, n- 1 j ,n-l m-U    m+l,n        m+l.n-1 m, n / 

+ A       .(2 5 +  f. ,  - 25       , l\    m,n        --   -   ' •—   '   -- m-l\ 

Atp(x    )DCn(R    )P' 
 m        D     m     m 

At2p(x    )DC   (R    )PZ 

m u     m     m 
2gm 

o 

/   ' m, n      'm, n- 1   \ 

"m,n-l m-1, n        m 

2 

-l,n-l) 

,  , t     f ^m,n      5m, n- 1 

°m "I SF~~~ m, n- 1 

m m :•- **') 

v + v 
o 

m 
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The coefficients   A    ,  B    ,  C       and   D       define a set of  M-2   linear 
m      m      m m 

equations for the unknowns § * (m = 2. .. , M -1).    These coefficients M m,n   x ' 
are expressed in terms of the previous displacements    ? 

m, n -1' 

Vn,  n- 2 
system for the   | 

which are assumed to be known.    The matrix of the linear 

takes the form of a three term   M-2   by   M-2 

band diagonal matrix.     This matrix is triangularized by use of gaussian 

elimination techniques and is readily inverted, thus yielding the solu- 

tion for the   Z .    The solution for the   £ is thus carried out 
"m,n                                                    ~m, n 

point-by-point in time, beginning with the initial conditions for   F,        , 

i. e. ,    £ =  0.      In other words at each time   n^t, the complete set m, o > f 

m, n 
(m = 2. . . , M -1)   is obtained and then together with previous 

m 
,    etc. ,  is used to solve for the complete set   5 

, n -1 r "m,  n +1 

If the following computations are made initially, 

C, 
i 

B, 

D, 
B, 

The generating sequences may be given for   m = 1,2,..., M-3 as 

B 
m+1 

m fl 

D 
m+1 

B    , .  - A       ,C 
m+1 m+1   m 

m+1 
Bm+1 

m+1 mt-1   m 
B 

m+1 

"(The subscript   m   labels the space net;   the subscript   n labels the 

time net.) 
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Following the computation of the above sequences,   the solution for 

?(m, t)    may be written for   m = M - 2,   M-3,.... 2   as 

^M-l.n+1    ~   DM-1 

m, n+1 m 
- C K 

1      "m-1  m+l,n+l 

Required Data 

a) 

b) 

c) 

Input constants .   m   ,   g,   D 

Static results.   X(S),   T(S).   P(S)   at intervals   As,   cable segment 

endpoints      Xj(S)   and  x-,(S)(x,>  x,) and endpoints of forcing 

function range   xAj(S)   and xA2(S) (x,,> X
A;)* 

Supporting subprograms to compute,   v   ,  p,   C-,   and   V 

i 

:Noto:    For the remainder of the discussion   X   will be used in place 

of   x   for the altitude coordinate. 
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Card Input to Program Balloon 

Columns             10 20 3C 40 50 60 70 

Card 1 NDA NMO NYR 

Card 2 NTAB NXPRT NVEL 

Card 3 IDEBM IDEBB IDEBA IOEBG IDEBS 

Card 4 XI X2 EPS TTEST DTPRT DTMPRT DT 

Card 5 DS G D EMO XBALL SBALL OMEGA 

Card 6 A XA1 XA2 XMID 

Columns           12 24 36 48 60 

Card Group 7 XV(1) 

XV(NVEL 1 

V(l) 

/(NVEL) 

XV(2) V(2) XV(3) V(3) 

Tape Input to Program Balloon 

Logical tape   2   contains   3   binary records. 

a) Record 1.  X(l), . . . , X(NTAB) 

b) Record 2.  T(l) T(NTAB) 

c) Record 3.  P(l),,.., P(NTAB 

Nomenclature 

NDA,   NMO,   NYR    date 

NTAB   number of data points tabulated by static program 

NXPRT   increment in   X   to use in printing the cable section 

results (i.e. ,   print every NXPRT x) 
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NVEL number of entries in wind velocity tables 

IDEB card--leave blank--used for debugging 

XI X   value at upper end of cable segment,  meters 

X2 X   value at lower end of cable segment   XI > X2,  meters 

EPS € = tolerance for deflection at ends of cable segment 

TTEST   time to test the program and halt at the first min and 

max after   t = TTEST 

DTPRT   increment in   t   to use in printing the cable section 

results 

DTMPRT   increment in   t   to use in printing the time history of 

the cable section midpoint 

DT   At - incremer.i. in   t   to use in evaluating the differential 

equations 

DS   AS = increment in   S   at which the static date was 

recorded,  meters 

2 
G   gravity at sea level, meters/sec 

D   diameter of cable,  meters 

EMO   m    = initial mass per unit length of cable, 

Kg/meters 

XBALL   x-coordinate of balloon,   meters 

SBALL length of cable,  meters 

OMEGA cd = angular frequency of forcing function,   radians 

A amplitude of forcing function   v ,   meters/sec 

XA1 upper limit of forcing function   v ,   meters 

XA2 lower limit of forcing function   v ,   meters 

XMID cable section midpoint,   meters 

• 
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XV   altitude in wind velocity table,  meters 

V   velocity in wind velocity table,   meters/sec 

Flow Sheet (following pages) 
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PROGRAM BALLOON 

Read static data tape  I 
table« X, T, P(X = XBALL....O) 

X 
Store the section between XI and X2 •.' y, T, P 

tables.    Determine the no.  of pta. 
involved N 

I 
Compute constants 

n—: 
Print input parameters 

XI(m, I) -  XI(m.3J = 0.0 
for m = 1 N 

t • -At    tXl = atprt    tmid - Atmprt 
XIMID = 0. 0 OLDMID = 0.0 

MIDTOT =  1   MINIT = 0    IEND -- 0 

CALL BOUND 

sets XI( 1.3) = X1(N, 3) = P. 0 

GH-       . "part = A sin u)t 

Xl(n, 1) XI(m, L\ 
XI(m •i) XJ(m 3> 
for rn= 1, ...,N 

< ALL ABCP 

mtiputes coefficients A.   R.   C.   D for points 

l              ti-l when XAI  * \     * X M -hen 

.         - f a. MX    - x     .r/o.-iMXAi 
'     Vrt'   L         m      '""' ' 

XA2H 
J 

I 
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ERROR:    Cable end« are not |       ^^^ 
close enough to original cable  -      Vttm   i  j 
write   XI   table (or  ! 

Determine initial slope 

If   *   slope MP1   5 
If  -   'lope MF'l   - 

1 

MINIr  =   1 

' ' 

Store midpoint to print 

tm-id  -  tin id   ♦ Almprt 

MIDTOT      WIDTOT •   I 

XIMIDfMlDTOT)   ■  ANSMID 

(Tint   XI   nble Jor  t 
f\| = tXI » Atprt 

Hunt tor final max and min 
or vice versa 

\lf 

MSI'M - vpr I^O/ 

rml  linn. hisn.ry "I  Midpl -^ /*!** 

**♦ i Nil oy i ASK *•• ^"' 
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PROGRAM BALLOON 
C     DYNAMIC ANALYSIS uF A 2-Ü TETHLRcD OALLOON SYSTtM   $f*jUit-1Lt 

UJMfcNSK'N  SPACE! 10Ü00) »XI (20U0.3). T TAB! 2000 ) .PTAdl <:000) 
l.*TA6(2C00) 
DIMENSION XV(10OJ .VI100).AiMlD!10C0).STUFP!10000)tSTUFT110000) 
COMMON SPACE.Xl.TTAb.PTAb.IDEbM.IDEbB.IDEbA.lDEbG.IDEBS 
l.XTAB 
COMMON t\l   STUFP,STUFT 

C     N POINTS DESCRIBE INPUT CAbLE SECTION oETwEEN XI AND X2 
C     WHERE XI MORE THAN X2. 
C     CABLE ANALYZED FROM XI TO X2 AT EACH DT 
C     THE CABLE IS SBALL LONG AND HAS NTAB INPUT INFORMATION POINTS 
C     AT EVERY DS POINT AND IS RECORDED ON TAPE UNIT 2 
C     NVEL IS NO. OF PTS. IN VELOCITY TABLE OF ALTITUDE XV VS VELOCITY V 
C     IDEB INDICFS PRINT INTtRMEDIATE OUTPUT IF NOT EGUAL TO ZERO 
C     DISPLACEMENT IS PRINTED AT EVERY NXPRT X VALUE IN TIME INCREMENTS 
C     OF DTPRT 
C     DISPLACEMENTS AT THE MID POINT OF THE CAcLE WILL BE PRINTED AT 
C     TIME INCREMENT DTMPRT 
C     WHEN T=T1EST THE PROGRAM IS STOPPED AT THE FIRST MAX AND MIN 
C     AFTER TTEST 
C     1ST DISPLACEMENT AFTER Si AND LAST BEFORE S2 MUST BE WITHIN EPS 
C     V TO THE T =  A ,SIN(OMEGA.T) . EXPONENTIAL FUNCTION OF X 
C     SPACE!1-2C00)=A, (2001-<.CC0)=t), (4001-6C0G)=C. 16001-8000)=D 
C     SPACE(8001-100001= D.RHOIXM).CD«KM)P(XMl/I2GI 

1 READ (5.6000) NDA.NMO.NYK 
IF (NDA) 99.99.2 

2 READ (5.3000)   NTAb.NXPRT,NVEL 
READ (5.8000) IDEbM.IuEöb.IDEoA.IDEbG.IDEbS 

8000 FORMATI7I10) 
READ (5.600DX1.X2.EPS.TTEST.DTPRT.DTMPRT.DT.DS. G.D.EMOtXbALL. 
1SBALL.OMEGA 

8 001 FORMAT (7F10.8: 
RtAO (5.8001) A.XA1.XA2 .XMID 

8002 F0RMATI6E12.6) - 

READ (5.3002) (XV( I ) »V(I).I = 1.NVtL) 
C     INPUT X.T.P 

REWIND 2 
WRITE (6.9050INTA3 

9050 FORMAT I//.53X.7H NTAB =.16.//) 
READ (2)(SPACE!I) .1 = 1.NTAB) 
READ (2)<STUFT(II»1=1.NTAB) 
READ (2MSTUFPU) .1=1,NTAB) 
DO 30 1=1.NTAB 
INDEX=I 
IF (Xl-SPACE! ! ) l30,40.<fC 

Jo CONTINUE 
<*u DO 5C I = INDEX.NTAB 

NXA1=I 
IF (XA1-SPACE! I i) 50.60.60 

5o CONTINUE 
6-> DO 62 I=NXA1,NTAB 

NMID=I 
IF (XMID-SPACSII)) 62.65,65 

62 CONTINUE 
6?> DO 70 I=NMID,NTAB 

NXA2=I 
IF (XA2-5PACEII)) 70.60.dC 

?o CONTINUE 
0" 00 90 !=NXA2 ,NTAB 

LA3T=I 
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BY.I5.15H POINTS FROM X=»E15.8. 
AT EALLOON=,tl5.8) 

IF   : ,:   -'. PACE! I ))   90.95.95 
9*   COMINUE 
95   N=LAST-INDEX+1 

NXM=NXA1-1NDEX + 1 
NXA2"NXA2-INDEX+1 
NMJD=NMID-INDEX+1 
WRITE   (6.70C0)   NTAB.N,INDEX.LA$T,NXAl,NXA2,XTAD(l).TTAö«l)»PTAb(lJ 

1.   XTAB(M.TTABIN) .PTAB(N) 
7^-Jv   FCRMAT16I10./.6E20.8) 

WR1TE<6.90CC)NDA,NMO,NYR 
9000   FORMAT! lHl . 30X.*»5riDT NAMl C   ANALYSIS   OF   A   TETHtRED   eALL-SN3<t<»-712. 

15X.12.1H/.I2.1H/.I2.//) 
K=l 
DO   100   I=JNDEX.LAST 
XTABU)=SPACE(I ) 

10O   K. = H+1 
WRITE   (6.9CC1IN.X1.X2.XBALL 

9O0±   FORMAT(5X.17ri   CABLE   DEFINED 
1   6K   TO   X=,E15.8-20H   IKHERE   X 

K = l 
00   110   1=INDEX.LASI 
TTA6(K)=STUFTUI 

110   K=K+1 
»RITE   (6,9002)   DT.TTEST.OTPRT.DTMPRT.EPS 

9002 FORMAT U9rt TIME INCREMENT DT = »E 12.5 ,AX, 13HT 1ME TO TEST= .E12.5.4X. 
113HDT TC PRINT X I = .E12.5.AX .2AHDT TO PRINT XI AT MIOPT =,E12.5./.43 
2X.17H   TOLERANCE   ON   XI=.   E15.8»/) 
K*l 
DO 120 UINDEX.LAST 
PTAS(|C) = STUFP( I) 

120 <=K+1 
WRITE (6,9003) G.D.EMO.DS,boALL»OMEGA 

9003 FORMAT(9X.2I1 G.16X.2H D,16X,2riM0,lbX,2H0S.13X,12NS OF BALLOON.11X. 
15HOMEGA./.E17.8.5E20.8I 

:     SET UP CONSTANTS 
C1=DT*DT/EM0 
C2=> . i*Cl/(OS*DS) 
C3=0.p*OT/EMO 
L)XX - -OMXA1-XA2) 
ALPHA--2. 3025851/(DXX«DXX) 
J=3001 
NS=1 
DO 150 I=1*N 
X=XTAB(1) 
CALL RHOX(X.RHO) 
CALL NU IX.GNU) 
CALL INTCRINVEL.NS.X.V.XV.VEL) 
3 = A35.(VEL*0*PTA|3{ I )/GNU) 
CALL CDRI3.CD) 
SPACE!J) =C.5#RH0*D*CD*PTAB<I )*PTAB<I)/G 
PTAB! I >=VLL 

150 J=J+1 
". VELOCITY i-jH   STORED IN PTAB 

WRITE I6,900A)A,XA1,XA2 
900U   FJKMAT! 7X.A1H V TO THL T = A.S I N( OMEGA. T ) .F ( X ) IvHtRE A *.E15.b.l2H 

IBETwEEN X --.E15.8.8H AND X =.E15.8) 
COUNT=IND! X+NMID -2 
SMID-SBAL!-DS*COUNT 
TM!DPT=TfABINMlOl 

: PRINT    INPLJT 
IF 1 IUEL'M)    10,20,10 
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lo WKirt (6.900SI 
«"< I T t ( 6 . 9006 ) < XV I I ) . V ( J ) 11 - 11NVEL I 

9005 F0ftMAT(26X.28HlVELOC«TV TAbLc.     ALTITUDE,12X.8HVELOC1 TY./> 
9CQ6 FOiMAT(37X.2£20.a) 

2U CONTINUE 
C     INITIALIZE 

T = -CT 
TAl=DTPRT 
7:UD=DTMPRT 
TS7uP=2.0«TTEST 

C     INITIAL CONDITIONS 
DO 200 1 = 1.N 
XIII.21*0.0 

20o xi(I,31=0.0 
XIMID(1)*0.0 
MIDT0T=1 
MIN1T=0 

C     THtRE HAVE t>EEN M1DT0T MiDPTS STORED. MINIT=0 MEANS INITIAL TIME 
OLDMID=0.0 
IENO=0 
VALS1=0.0 
VALS2=0.0 
CALL Ö0UN0(N.VALS1»VALS2) 

C.    oET BOUNDARY CONDITIONS—XI=0.AT ENDS OF CABLE SEGMENT 
C     RESET LOOP 

ivu   T=T+DT 
IF (T-TSTCPl 301.800.800 

301 SVT=A *SlN(OMEGA*T) 
DO 250 1=1.N 
X1(1.1)=XI(1.2) 

25u XI(1,2)=XIII.3I 
C     COMPUTE COEFFICIENTS A.b.CD OF XI AT N+l SUCH THAT 
C     A1M-1) XIIH-ll  +  blM-1) XI(M)  +  C(M-l) XKM+1)  =  D(M-l) 

CALL AbCD(N.Cl.C2.C3.SVT.NXAl.NXA2.DT.ALPHA,XMID) 
C     GENERATE ELEMENTS IN THE SOLUTION MATRIX 

CALL GENERAT IN) 
C     SOLVE THE TRIANGULAR SOLUTION MATRIX 

CALL SOLVEINI 
ANSMID=XI(NM1D.3) 

C     CHECK THAT DISPLACEMENT IS SMALL NEAR THE ENDS 
NM=N-1 
IF ((ArfSlXi(2.31)+AbS(XI(NM.3)))-EPS) 350.350.340 

340 WHITE (6.V010) T ,X1 (2 . 3) ,XI(NM,3),EPS 
901U F0RMATI6H1AT T*.E13.6,16H XI AT THE 2ND PT=»E13.6.22H AND XI AT TH 

It N-l PT=.  E13.6.21H WHtRE THE TOLERANCE=.E13.6) 
WRITE (6,9022) T 
WHITE 16.9023!(XTAolI),TTAD(1),XI(1,3).I=1.N.NXPRT) 
GO TO 1 

35u CONTINUE 
C     FIND MAX.rflN OF TIME HISTORY OF CABLE MIDPOINT 

IF «MINIT) 410.380,410 
38^ MIMTsl 

IF (ANCMIU-ÜLDMID)  400,390,390 
C     POSITIVE SLOPE FIND MAX 

JSSJJ MPT = 1 
oO TO 500 

C     NEGATIVE SLOPE  FIND MIN 
4 0U MPT=-1 

GO TO 500 
410 lF(MPT) 420.450,450 

C     MINIMUM SEARCH 
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460 

9Ü2U 

5 Co 

510 

600 
610 

••c-j   .i-    IANSM1U-ULDMIN)   500.440 •'»'.0 
MINI MUM 

4(*u   MPT»1 
WRITE (6.9020) ANSMI0.7»SKID.XMJD 

9J21 FORMATI/,37H MAXIMUM DEFLECTION AT MIOPOINT XI = ,E15.6.4Xt 
l5rtTlME=,ElS.8»4X,2HS = El5.6»4X»2nX=,Ei;>.6./) 
GO TO 500 
MAXIMUM SEARCH 

430 IF(ANSMID-OLÜMID) 460.460.300 
MAXIMUM 
KP1=-1 
WRITE (6.9021)ANSMID.T.SMIC.XM1D 
FORMATI/,37H MINIMUM DEFLECTION AT MIDPOINT XI=.E15.8,4Xt 
15HTIME=»E15.9,4X,2HS=E15.8»4X.2HX=,El5.8./) 
OLDMlN=ANSMID 
IF(T-TMID) 600.510.510 
TM10=TMID+DTMPRT 
MI0T0T=MIDTUT+1 
XIMID(M1DT0T)=ANSM1D 
IF (ABS(T-TXI)-O.Ol) 610.610,700 
TX1=TXI+DTPRT 
WRITE (6,90221 T 
FORMAT!//,11X.6H TIKE=E15.8.7X,2H X.18X.2H T.1BX.2MXI) 
i>RITE (6,9023)1XTA6IIl.TTAolI),x:il,3) , 1=1.N.NXPRTJ 
FuRMAT!27X.3E20.8) 
IF (IEND) 770.710,730 
IF(T-TTEST) 300,720.720 
MSUM=MPT 
1END=1 
GO TO 300 
IFIMPT + MSL'M) 300,760,300 
IEND=-1 
WRITE (6,90221 T 
«KITE '6,902 3)(XTAdlI),TTAo(I I,XI(I.3)»I = 1»N.NXPRT> 
MSLM' M?T 
IK (MPT+MSUM) 300.800.3U0 
WRITE (6,90221 T , 
WRITE (6.9023)(XTA6II).TTAb(I),X1(1,3).1=1.N.NXPRT) 
WKlTt (6,9025) SMID.XMlD.TMlDPT 
FORMATIlHl»13X»39nTIME HISTORY OF CAbLt MIDPOINT WHcRc S=»El3.b. 
13X..^HX=,tiP.b»iX.2MT = ,ti3.b./»49X,2nT »16X.2H> I ./) 
TIME=0.0 
00 900 I=1»MIDT0T 
WRITE (6,9026) TIMEiXIMIDII) 
F0RMATI37X.2E2Ö.8) 
TIME=TIME*DTMPRT 
WRITE (6.9030) 
FORMATI//,49X.22H *****END OF CASE»*»**) 
GO TO 1 
CALL EXIT 
END 
SUBROUTINE ABCDIN. Cl.C2»C3.SVT»NXA1,NXA2»DT.ALPHA,XMI0) 
DIMENSION  SPACE!10000)»XI I 2000.3),TTAtt!2000)»PTAÖ!2000) 
l,XTAB(2oC0) 
COMMON SPACE.XI• TTA6 ,PTAb » IDEKM» 1 OEbb » I UEo<> > I UEbG. lOtbS 
1.XTA8 

C     CU/PUTES N-2 COtFlClENTS A.n.C,AND D DtHNiNG XI AT N*l 
C     oIvLN XI AT N AND AT N-l 
I.     bPACEl 1-2000)=A» (2001-4000i=b, (4001-6000 ) =C. (6001-dOOO)=0 

XI ('M»1I=XJ (M.N-1) »XI (M.2) = XI (M.N) 
MM *N- 1 , . 

9^22 

>o23 
TOO 
71J 
7tv 

750 
76o 

ä  ■:.  V 

/..S.-j 

■   2b 
9 0u 

•' J30 

99 
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Du   KO   M=2.NM 
MM=M-1 
MP=M+1 
SuOP=SPACt(OOCO*M) 
ADJUST   FORCING  FUNCTION 
VEL=PTAB(K> 
W-VEL«ABS(Vfcll 
IF (M-NXA1) 6C,50,40 

40 IF( M-NXA2) 50,50.60 
50 DXX = XTAD|f".)-XMlD 

POWER = -Ai.PnA»DXX»DXX 
SVTiA.SlNIUMEGA.T) 
VT=SVT»tXP(POWER) 
CON=VEL*VT 
GO   TO   70 

60  CON=VEL 
7u  C0.\Ays = AHS(CON-«Xl (M«2)-XIlMtl) )/0T) 

C0NS'i-C3*SLCP»CONABS 
A=-TTAo(KK)«C2 
b=l.Ü+liTAb(M)+TTAb<MM))»C2+C0NST 
C=-TTAB(M)»C2 
D=-Xl(M.ll+2.»XI<K,2)-C»(2.0*XI<MP.2j+Xl (MP,1)-2.0*Xl(M,2) 

1-Xl(M,l))+A»(2«0»XI IM,2)+XI(M»lJ-2.0*Xi(MM,2)-Xl(MM»l)) 
2   +CONST»Xl(M,l)   -C1«SL0P»(VV-C0N«C0NABS) 

SPACE(MM)=A 
SPACE(MM+20C0)=Ö 
SPACE(MM+4C00)=C 

lüu SP*Ct (MM+6000)=D 
RETURN 
END 
SUBROUTINE  GENERAT (N) 
DIMENSION  SPACE!10000). XI(2000.3)>TTAB(2000).PTABI20001 
l,xrA8(2000) 
COMMON SPACE.X1.TTAb.PTAo.IDEbM.IDEcB.IDEbA,IDcöG.lDtöS 
1.XTA8 
UeNERATr. tttMcNTS IN T.nt SULUTIÜN MATKIX 
SPACE! 1-200C)=A» (2001-4000=0, (4001-60001=0 (6001-6000)=D 
GENERATES C( 1) -C(N-l),D(1)-D!N-l) ,, 
SPACE (4.,C1)=SPACE(4001)/SPACE (2001) 
SPACE(&*C 1)=SPACE(6G01)/SPACE(2001) 
W = N-3 
DO 100 M=1,NM 
MP-M+1 
M2000'MP+20CO 
M4JCv=MP+4000 
M600v=MP+6000 
SP ACE(M2Cw0)-SPACEIM2000)-SPACE(MP)»SPACE(M+4Q00) 
SPACE (V4Cv0)=SPACE(M4000)/SPACE (M2C00) 

lüJ SPACE(VfcOC0) = lSPACE(M60001-SPACE(MP)»SPACE(M + 6000))/SPACE(M2000 } 
RETURN 
END 
oUa«OUT(NE SOLVE (N) 
ül.PENSION  SPACE! 10000) ,Xl ( 2000. 3 ! . T TAb ( 2uO0 ) tPTAb(2000) 

i * x r A ri (2 o c o) 
COMMON f PACE -.XI .TTAB.PTAü.IOtBM, IDEoa.1DcbA,IÜEÜG,IULBS 
l.XTAB 
SOLVE TnE TR1AMÜULAR SOLUTION MATRIX 
SPACE! 1-2^0G)=A, (2001-400ü)=b, (4001-6000)-C» (60C 1-öOCO)=D 
NM-N-2 
INDtX»NM+6000 
MIN- 1 . 3)=SPACt( INuEx) 

i 
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DC 100 I=2.NM 
J=NM. -1+1 

100 XI(J*lt3)=SPACE(J+6000)-SPACE(J+4000) «XI (-H-2.3) 
RETURN 
END 
SUBROUTINE  BOUND (N.VALSI»VALS2I 
DIMENSION  SPACE!10000) .XI(2000.3 ) .TTAdl2000)»PTAB(2000) 
lfXTAB(2000) 
COMMON SPACE.XI.TTAB.PTA6. IDEbMtICEoB.10EBA,lDtBG. IDEüS 
l.XTAB 

C     SET BOUNDARY CONDITIONS—XI=0»DXI/DT=0 AT ENDS OF CABLE SEGMENT 
XI(1,3)=VALS1 
XHN»3)=VALS2 
RETURN 
END 
SUBROUTINE NU IX.-GNU) 

C     KINEMATIC VISCOSITY VS ALTITUDE 
1.  (X-10000.) 1.1.2 

1 GNU=-4.823+X/26800. 
GO TO 5 

2 IF (X-17700.) 3.3»* 
3 GNJ=X/17100.-5.035 

GO TO 5 
4 GNU=X/14250.-5.2421 
5 GNU=10.*«GNU 
RETURN 
END 
SUBROUTINE INTER IN.NS.XL.V.XV.SVD 

C     GIVEN THE ALTITUDE. THIS ROUTINE INTERPOLATES LlNtAKLY TO 
C     OBTAIN THE WIND VtLOCITY FROM INPUT TABLE 

DIMENSION  V(IOO).XV(IOO) 
NN=N-NS+1 
IF (XL-XV(NN)I 5.5,6 

6 NS = 1 
5 DO 1 I*NS»N 

J=N-I+1 
IF (XL-XV(J)) 1.3»<» 

3 SVL=V(J) 
GO TO-2 

4 SVL = (VIJ+1)-V(J)l*(XL-XV(J+l) )/(XV(J+ll-XVIJ) )+V(J + l) 
GO TO 2 

1 CONTINUE 
2 NS=J+1 
RETURN 
END 
iUoROUTlNE CDR(R.CD) 

C     DRAG COEFFICIENT VS REYNOLDS NUMBER FOR CABLE 
IF IR-2.23) 1,1.2 

1 CD=a0.8*R**(-.742) 
GO TO 10 

2 IF (R-8.0) 3.3,* 
3 CD=9.15*R**(-.526) 

GO TO 10 
4 IF (R-1000.0) b.5.6 
» CD=4.95»R»»<-.232) 

GO TO 10 
6 IF (R-10000.) 7.7.8 
7 CD=1.0 
GO TO 10 

8 CD=1.15 
1^ RETURN 
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END 
SUBROUTINE RHOX(XtRHO) 
MASS DENSITY VS ALTITUDE 
RHO=.26-X/:6000. 
RHO=lC.«*«HO 
RETURN 
END 
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WIND INDUCED VIBRATIONS BY MEANS   OF 

VORTEX SHEDDINGS 
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Introduction 

Considering the cable subjected to a steady wind flow,   any high frequency 

dynamic effect on the cable will cause it to vibrate about its static con- 

figuration.    In other words,  the dynamic response of the cable to high 

frequency excitations can be considered as a perturbation on a static 

initial configuration which is related to a steady wind.    Further simpli- 

fication of the problem can be done by considering the high tension in 

the cable and its low weight per unit length.    The propagation velocity 

of the transverse wave in the cable is 

c  .   ,£ 
m 

(D-l) 

In addition the frequency of shedding vortex pairs is 

ST(R)VoP 
f D (D-2) 

where   ST is the well known Strouhal number.    In the present case   f 

is of the order of 1000 cps.    The wavelength which one should be con- 

cerned with is 

ZL      =     £ 

which, for the present purposes, is of the order of 2 meters. ' ence 

the most effective mode of the cable will be the one which is of wave- 

length   ZL. 

In order to estimate the  response of the cable to vortex sheadings,   one 

can solve the equation of motion for the cable considering a portion which 

has the length   L.    This portion can be assumed to be supported at its 

c ndpoints. 

74 

OPwtSiäSMÄS  ■ ■  . . .   i 



The perturbed dynamic equation of motion for the cable is 

32W 

OS2 
m $*iw\Fylgj 2    3W 

St 

7pC„V P2Dsin2wf t 
2 p   K   o v (D-3) 

where   CT,   is the lift coefficient (Refs.  5 and 6) and   V  P   is the normal K x ' o 
component of the wind velocity vector with respect to the cable. 

The last equation, which has been solved numerically by means of finite 

differences is discussed in a following section.    The scheme that was 

used for this purpose was an unconditionally stable one.    The integration 

process ran on a computer for two hundred cycles of the forcing function. 

Within this process of integration the cable reached a steady state re- 

sponse.    For   L = 0.775   meters the maximum deflection of the cable was 

0.58   x   10       meter, which does not indicate any considerable increase 

in the stresses in the cable.* In conclusion, the cable subjected to high 

tension converts, by means of the vortex sheddings, wind flow energy 

to other kinds of energy; however, there is no indication that the high 

frequency vibrations of the cable with small amplitude might cause any 

failure. 

;:The properties of the cable and wind field were chosen from the 
steady-state example and are as follows:    midpoint of cable portion at 
4000 m;   T = 773. 0 Kgf,  P = 0. 522,   P = 1.0Kg/m3,   V0 = 1 3. 8 m/sec, 
m = 8 x 10"4 Kg/m,  D = 2. 5 x 10-3 m, CD = 1,  C     = 0. 

K 
f'6,  ST = 0.22. 
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Numerical Analysis of Problem 

j   i 

a) Equation of Motion 

öS Vm .^Zj as' 
m   ifw   _^m)DV2p2   vt    c 

o   ^ 2 2g o    m K 

,(x   ) v m* 
2g       ^D V"m 

(R   )D 
\   m/ 

•   V2 P2     + 
o    m (f) 

1/2 

at 

where   W   is a deflection   i to the plane of Fig.   1.      The 

short cable section length leads   to assuming the following 

parameters constant:    V   ,  T    ,  P    ,   nfx    \ ,  C« (R    \ , r o      m      m   r\  m/       D \ m/ 
CK (Rm) •  ST (RJ 
The equation of motion becomes: 

o2W 

as2 
r2„2,rt 

0 t 

V2 P2   + o 

1/2 
dW 
St 

whe re: 

V     =   sin 2nf   t 

S,rV   P 
1     o 

D 

- 
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given the frequency    f ,   the following parameters can be 

calculated: 

At   = 
1 

?0f 

V"m7 2v 
i   =     ü t = -7— «(no.  cycles) 
*- ?f max        f     v * ' 2f 

b) Difference Analogue 

T 

4AS 

+   W 

(• 
W +   W ,    -   2W L1    +   2 

2 I   m+l.n+1 m-l,n+l m,n+l 

-   2W 
m-l,n m ..)♦ m+l,n-l m-l,n-l 

f w 
\   m+1, n 

m, n-lj 

m. 

At' 
(w 

m, n+1 
2W 

m, n 
+   W 

m . n- l) 
P   Cv DV2 P2Vt 

Tg     K        o 

PCDD 

2g 

2     2 
V    P      + 

o 

fw 
»   m, n 

W .) 
m, n-1 / 

2-|l/7 

At c W         ,.   -   W 
m, n+1 riVj 

2 At 
,j) 

The cable segment is analyzed for half of its length   I   and 

is defined between points    1   and   M   where   M   is at   l/Z. 

The "ficticious"   point   M   +   1   is used. 

c) Initial Conditions 

W ^0.0   for   m   -    1,2,..., M+ 1 
m, o 

d) Method of Solution 

If   Am-lWm-l,n+l   '   Bm-lWm,n+l   
+   C«-l, Wm+l.n+l 

D       .    for   m  = 2.   . . . f   M 
m- 1 

if   ■■ 

- ww» MM joKanr. änarama awssaatnasas       -*äH.>*WV 



then: 

m-1 4AS2m 

B 
m-1 

1    -   2A 
AtpCDD 

+    —— 
m-1 4m g o 

V2P2 

o 

(w     - w     y 
\  m,n m, n-1/ 

At 

1/2 

'm-1 m-1 

D 
m-1 

A      , |W     .,        .    +   W       ,        ,    -   2W 
m-1 |    m+l,n-l m-1,n-1 m,n-l 

+   2 

-if 
V   m+l,n 

+   W -   2W 
m-l,n m .-)] 

At2pCKDV2P2Vt AtpCDD 

2m„g 4m g o& 
V2P2 

o 

(w          -   W .V 
\   m, n m, n-1/ 

At 

2W -   W 
m,n m,n-l 

1/2 
W 

m, n-1 

The solution of the linear system for   W is carried out 7 m, n 
by the matrix inversion procedure described in Appendix C. 



e) Boundary Conditions 

0 

w lfn+l 

*M-1 

'M-l 

0.0 

AM-1   +   CM-1 

DM-1    +   CM-: |WM+l.n-l ■t -   W, M-l,n-l 

+   2(WM+l,n   "   WM-l,n)] 

Soluticn of System of Equations 

If the following computations are made initially, 

Cl    =   Cl/Bl Dl    =   Dl/Bl 

The generating sequences may be given for   m   =   1,   . . . , 

M - 1 

'm+1 
B    xl    -   A    ,.C 

m+1 m + 1    m 

'm+1 
'm+1 B 

D 

m+1 

m+1 m+1    m 
m+1 B 

m+1 

Following the computations of the above sequences the 

solution for   W(m,t)   maybe written for   m   =   M+1,   M, 

 I 

W 
M,n+1 

W 
M 

D 
M-l 

+ l,n+l       =     WM-l,n+l    "   2VVM+l,n   "   WM-l,n) 

W +   W WM+l,n-l M-l,n-l 
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w D      .    -   C      . W    ..      .. m-1 m-1     m+l.n+i m, n+1 

where   m   =   M-i,  M-2,   ...,  2 

g) Required Data 

Input constants:    D, m  , g,  V  , T,  P,  p,  C      C„, ST 

where   CD>  CK>    and   S„   are functions of Reynolds No.  R 

' 
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Input to Program MUSIC 

Columns          10 20 30 40 50 60 70 

Card 1 NDA NMO NYR 

Card 2 NPOINT NCYCLE NXPRT NTPRT IDEBUG 

Card 3 G X DS T P RHO vo 
Card 4 EMO D CD CK ST 

Notation 

NDA, NMO, 
NYR 

NPOINT 

NCYCLE 

NXPRT 

NTPRT 

IDEBUG 

X 

DS 

Date 

Number of points in the cable section to be analyzed. 

The section will be analyzed up to its midpoint 

M   = (NPOINT/2) +   1 

Number of cycles to run program 

Increment used in printing deflections   W   at any time 

(i.e. ,  printed at every   NXPRT   point out of   M + 1 

points) 

Increment used in printing the time history of the mid- 

point (i.e. ,  printed at every   NTPRT   time) 

If   IDEBUG = 1   deflections at every   NTPRT   time will 

be printed 

If   IDEBUG = 0   only the time history of the midpoint 

will be printed 

Gravity constant (meters/sec  ) 

Altitude oi the cable section (meters) 

AS = S   increment between the points in the cable 

section (meters) 

Tension in the cable section (kilograms-weight) 

SOMMBfi 
I 

i 
■ 

Hyg 



*■   "■■- ■■■* - ■■■■■■--■■ 

P P = Ax/AS   =   cos a    =   determines slope of the cable 

section 

RHO o   ~   density of atmosp'.iere (the program divides   p by   g) 

(Kg/meters  ) 

V     =   wind velocity on cable (meters/sec) VO 

EMO 

D 

CD 

CK 

M     =   mass/unit length of cable (Kg/rneter) 

Diameter of the cable (meters) 

Drag coefficient 

Lift coefficient 

Strouhal number 

S   functions of Reynolds number 

J 

l 

HZ 
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Flow Chart 

HROfiBAM MUSIC 

OH 

Cf.nput* P» ramfirr* 

1 
|VoV| 
1        D   "1 

A l/iOl 

*   pr.nt fV»». , ' ^TTr ' > pr  nt) 

/ T/mn 

""t 

1 -nax 1 
.ycics) 

" •>l 

CompUtr ( nnsiants 

«,«!., 

hut »lite 
[OOP  - -I.   I 1ST       i 
W(l. . .«*!. I) ■ W(l... M-tl.i)     0 

£H [OOP      LOOP  . I 
t      1 OOP•£t 
v' - - nluil 

W( I. . .M.I, |)*-W( I   . ,M«l.fl 
»'(I. . ,MiU|*»| I. . ,WH, i) 

CA] AHC [1 HH ... \! a C2 ■ <"* : t,\ 
AH; I) hi iK eo Tl.*  t Tit* A H   , « " . i) 
-vh,' M-  :   - 1 '1-1 

Call  fUmml  i:  ' <'" v 

IH11-N1)  -   •-  '.'•( I, i)  "  II  ."i I 
r. H.-1 ,,.-   A(M-I) m.l  l)('.l.l) 

A 
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0 
Call GENERATE given M 
GENERATE changes the coefficients 
to g-vp the solution matrix 

Call SOLVE given M, AS2. At 
SOLVE finds the solutions 

W(i...M + l.J),„d  ^   and £*■ at M 
AS^ &t 

Writ'.' cable deflection fur 
t and if -. tfy' (printed in 
increment* of NXPRT) 

Write tune history of cabl<> midpt 

t,   W(M, 3) A" W     AW 

- 
84 



J  i 

1 

2 

c ->0i 

• SÜ ANALYSIS OF THt MUSICAL PROBLEM    SJ3JJ-J16 
DIMENSION   «(10Ü.3). Alluul.BClOOItCllOOI.DIlOOl 

NPG1N? Pof-;UC^SCRlBE A SHORT SEGMENT OF THt „ALLOON CA„LE 
fnt SEOST ?S MNALYZW FO* M=NP01NT/2+l POINTS USING A FICTITIOUS 

THE^HSRY'SCGMENT ASSUMtS CONSTANT VALUES OF X.T.P.khO.VU.CD.Ol.ST 

READ (&,e00C)NDA.NPlO»NYR 

FORMAT( 7I1CI 
Ir (NDA) 99.99»2 
READ (5,80001 NPOlNT.NCYCLE.NXPKT.NTPRT.IDEBUG 
READ .sIsOOl) G.X.DS.      TEN.P.RHO.VO.EMO.DIA.CD.CK.ST 

THA^OF'THE RUN IS CALCULATED AS  NCYLLE.2P1 /FKcOUtNCY FV 
DT OF TnE KJN IS CALCULATED AS 1/(20.FV) 
rHE CABLE SEGMENT LENGTH la CALCULATED AS SORT(T/MO)/«2.FV) 
DATA IS PRINTED AT EVERY NXPRT POINT FOR EVERY DTPRT TIME 
DTPRT=2PI/lFV.NTPRT) 
«RITE (6.90Ü0) NDA»NMOiNYR 
FORMAT (1H1,28X.50MOYNAMIC ANALYSIS OF THt MUSICAL PROBLEM—SN3*M 
716 ,<.X»i2.1H/tI2*lH/.I2t//» 
CJ.-VPUTE CONSTANTS 
CY.:LL5 = r.CYCL.£ 
rV=AbS(VO*ST«P/DlA) 

ÖT-..03/FV 
TP-I<TPRT 
DTr'KT=6.2ö31653/iFV*TPI 
C,\cLl-   ;.5«SJRT(TEN/£M0)/FV 
0KtGA = 6.;.oJlÖ53»FV 
TMAX= fc.2ö31853»CYCLES/FV 
DT2=DT«CT 
DS2=DS»DS 
Cl- O.2b»DT2»TEN/IEM0*DS2) 
C2= 0.ii«KnC*CD»DIA*DT/(EMO»G) 
C3=(V0«P)*»2 
PH11* O.D»RnO*C<*DIA»C3/G 
C ^P.^I 1*0T2/EMÜ 
M = ;,P0IM/2 +1 
■ •ir=;-l +1 

.vRITE (6.9001) NPÜINT.M.CAÜLE.X.RHO.V0.EM0.D1A.TEN.P 
Ku-iM,AT(19X,25H CABLE SEGMENT DEFINED BY,13.2^H POINTS AND ANALYZED 

  LtNUTH 

LOCITY V0=. 
in     TtNSIO 

,„>1 Ku3MAT(19X.25H CABLE SEGMENT DEFINED BYiI3.2^H POINTS ANI 
1 FOR.I3»Z6H POINTS UP TO THE MIDPOINT.//»23H CAbLt DATA 
2^.L15.3,5H   X=»E15.8.1!>M   DENSITY RHO=,t1S.8.15H   VtL< 
3tl'j.b»/.lSX»9H MASS M0=»E1I>.8. 13H  DIAMETER D=»ElS.d, 1< 
'.;. T = .Clb.8» 10H  P = UX/DS=.tlt>.8./) 

I Ju2 
1E1 

yuOJ 

..KITE 16,9002) CD.CiitST 
FUK.XAT (29" FUNCTIONS OF KtYNULDS NUMBER . lt>X . 3HC = ifc it> • a . l3X . JHC = . 
EU'.o.l^X.ihS -.Eli.8»/f^4Xt2H D . 32X , IHK , 32X»1MT .//) 
WKITEI6.9-03) TMAX ,DT .DTPRT.US.G.FV 
FOtfMAl (3X.13H MAXIMUM TI ME.8X . 13riT1 ME INTERVAL»tX.17HPRI NTING INTt 
HVALI8X.7HCELTA S.13X.7hGRAVlTY.llX.12HFRt0UENCY FV./.E17.8,5E20.8 
) 

, v 1 ■} 

INITIALIZE 
T^-DT 
rPKlNT=DTPRT 
b.>   UO   1 = 1 »MP 
Ai ! .21=0.0 
w (i» n = j. o 
A!<lTt      (6.  'CIS) 
Fo.w.AT    ( liil,i,0X.30HTIME   HISTORY   OF LABLt   SEGMENT   MlÜPUINT . lltk'*' 
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V 

1 

20* 

30u 

15H   riME,ieXtlMwtl3X«l3hiNü  DER   UW/DS.llXOHDw/DT » 
L0CP=-1 
L1ST*1 
RESET   LOOP 
LOOP=LOCP*l 
SIGGP=LOCP 
T=5LCOP*OT 
VT=SlN(OMEGA*T) 
00   300   1=1.MP 
ft ( 1 . 1 | = * < 1 . 2 ) 
W(1,2)=w(1.3) 

C     COMPUTE COEFFICIENTS A.6.CD OF w SUCH THAT 
C     A(M-l) W(M-l) ♦ BIM-11 WIM) ♦C(M-l) W(M*1)=D(M-1) 

CALL ABCDIM.C1.C2.C3.C4.VT.DT) 
C     ADJUST BOUNDARY CONDITIONS 

CALL SOUND (M) 
C     Ucf.tKATE ELEMENTS IN THE SOLUTION MATRIX 

CALL GENERAT(M) 
C     SOLVE THE SOLUTION MATRIX 

CALL SOLVEiM.D2A'DS2.DwDT.DS2.DT) 
IF ( lDESuG) 450.45C.350 
IF (T-TPRINTI450.400.400 
PHI=PHI 1»VT 
WRITE 16,9010) T.PHI 
FORMAT!  87X, 6H T1ME=.t10.3.3X.4HPMI=,clO.3./.97X.3H PT.13X.1HW) 
«RITE (6,9011)(I.*(I.3).I=i.M»NXPRT) 
FORMAT (96X.I4.E20.ÖJ 
IF (T-TPRINT) 500.460.460 
LIST=LI$T+1 
SLIST=LIST 
TPRINT=SLIST»DTPRT 
WRITE (6,9016)   T,W!M.3),D2wDS2.DwDT 
FORMAT! 17X.4E20.8) 
IF (T-TKAX) 200,600,600 
WRITE (6,9020) 
FORMAT(//,49X.22H *»*«»tuD OF CASE«****) 
GO TO 1 
CALL EXIT 
END 
SUBROUTINE ABCDIM.C1.C2.C3.C4.VT.DT) 
DIMENSION    WI100.3I« A( luu) ,B! 100),C(100),D(100) 
COMMON h.A.Ö.CD 
00   100 1=2.M 
MM-I-1 
MP=I+1 
A(MM)=-C1 
CON=C2*SCRTCC3+(((W<I,2)-W(l,1))/DT)#*2) ) 
B<MM)=1,0-2.0*A(MM)+CQN 
CI MM) »A(MM) 
0(MM)=-AIHM)«(W(MP,1I+W(MM.1)-2.0*W(I»l)+2.0*!wiMP»2)+w(MM,2) 
1-2.0*W( 1.2) ) )+'.'»«VT+CON*W( I .1) + 2.0*  ( I ,2)-w ( 1,1) 

10v '.. ,-NTINUE 
RETURN 
END 
SUBROUTINE bCUND(M) 
DIMENSION    W(100,3), A(10uI,B(100),C(100),D(100) 
COMMON w.A.B.CO 
»(1.31=0.0 
MM=M-1 
MP=M>1 
Al MM)=A(MM) + c(MM) 

350 
40u 

9010 

9011 
450 
460 

9C16 
500 
600 

9u2u 

99 
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D(M)=C(MM)+C(M.V!1»(*(MP.1)-W<MM.1)*2.0»<WIMP.2)-W<MM.2) ) ) 

RETURN 
END 
SUöROUTINE GENERAT(M) 
DIMENSION   WU0C.3). A(ICO)iB<100!»C(100).01100) 
COMMON W.A.B.C.D 
C<1)=C(1)/B(1) 
0(1) «Dili/BUI 
MM2=M-2 
00 ICO I=1.MM2 
MP=I+1 
b(MP)=B(HP)-A<MP)»CU ) 
C(Mp)=C(MP)/B<MP) 
D(MP)=(D(MP)-A(MP)*DIII)/b<MP) 

100 CONTINUE 
RETURN 
END 
SUBROUTINE SOLVE(Mto2wos2.DwDT.Ds2.DT) 
DIMENSION    W1100.3). Al loo ) .81 100).C(100).01100) 
COMMON n.A.ü.C.D 
MM-M-1 
MP=M+1 
W(M,3)=D(N!M) 
DO 100 I-2,MM 
J=MM-I*2 
w(J.3)=D(J-l)-C(J-l)»«/(J+1.3l 

100 CONTINUE 
DrfOT     = 0.5*(W(M.3)-w!M.l)l/DT 
SYMMETRICAL CONDITIONS AT POINTS M-l AND M+l 
W I HP . 3 ) = ft' (KM. 3 ) -2 . 0* 1 W 1MP . 2 ) -W (MM . 2 ) ) -w I MP . 1 ) +«/ ( MM . 1) 
D2rtDS2=G.25»(W(MP.3)+W(MM,3)+WlMPtl)+W(MM»l)+2.G*{WlMP,2)+w<MM,2) 

1 -nlM.3)-W(M,l)-2.0* W(M,2)))/DS2 
RETURN 
END 
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